

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FIELD PROGRAMMABLE GATE ARRAY (FPGA) BASED
SOFTWARE DEFINED RADIO (SDR) DESIGN

by

Durke Wright

March 2009

 Thesis Advisor: Frank Kragh
 Co-Advisor: Herschel Loomis

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Field Programmable Gate Array (FPGA) Based
Software Defined Radio (SDR) Design
6. AUTHOR(S) Durke Wright

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

There are existing wideband communications systems that were built using field programmable gate array (FPGA)-
based software defined radio (SDR) designs. Despite the inherent advantages of these systems, some are functionally
restricted by limited output bandwidth. This thesis was conceived in order to mitigate the restrictions imposed on such
designs. This was accomplished by designing an FPGA-based SDR that can compress sampled intermediate
frequency (IF) signals. The compression scheme used in the final design is based on flexible operator-defined time-
frequency bins and independent energy thresholds for each bin. The thesis presents basic design concepts that
influenced the development process, the final design implementation created using Xilinx’s System Generator
software, and the tests used to verify the final design’s functional capabilities.

15. NUMBER OF
PAGES

127

14. SUBJECT TERMS

Software Defined Radio, SDR, Field Programmable Gate Array, FPGA, Signal Compression

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FIELD PROGRAMMABLE GATE ARRAY (FPGA) BASED
SOFTWARE DEFINED RADIO (SDR) DESIGN

Durke A. Wright

Lieutenant, United States Navy
B.S., The George Washington University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: Durke Wright

Approved by: Assistant Professor Frank Kragh
Thesis Advisor

Professor Herschel Loomis
Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

There are existing wideband communications systems that were built using field

programmable gate array (FPGA)-based software defined radio (SDR) designs. Despite

the inherent advantages of these systems, some are functionally restricted by limited

output bandwidth. This thesis was conceived in order to mitigate the restrictions imposed

on such designs. This was accomplished by designing an FPGA-based SDR that can

compress sampled intermediate-frequency (IF) signals. The compression scheme used in

the final design is based on flexible operator-defined time-frequency bins and

independent energy thresholds for each bin. The thesis presents basic design concepts

that influenced the development process, the final design implementation created using

Xilinx’s System Generator software, and the tests used to verify the final design’s

functional capabilities.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..2
C. SDR DESIGN OVERVIEW ...3
D. RELATED WORKS..5
E. THESIS ORGANIZATION..7

II. DESIGN CONSIDERATIONS...9
A. FOURIER ANALYSIS..9
B. FPGA BASICS ...11
C. FPGA DESIGN FLOW ...12

1. Define and Verify Functional (Logical) Behavior...........................12
2. Synthesis..13
3. Place-and-Route (PAR) ...13
4. Testing...13

D. SYSTEM GENERATOR (SYSGEN)...14
E. SUMMARY ..17

III. CONCEPTUAL DESIGN MODEL ...19
A. SIGNAL ..20
B. FFT..20
C. BIN ENERGY CALCULATION ...21

1. Time Windowing..21
2. Frequency Windowing...26

D. BIN THRESHOLD ANALYSIS...27
E. DATA MANAGEMENT...28
F. SUMMARY ..33

IV. DESIGN IMPLEMENTATION DETAILS ..35
A. FAST FOURIER TRANSFORM (FFT)..36

1. SysGen FFT v4.1 Module ..36
2. SysGen FFT v4.1 Module Constraints ...40

B. BIN ENERGY CALCULATION ...41
1. Control Module: Energy (FFT Index) ...42
2. Control Module: Energy (Time Window)43
3. Control Module: Energy (Frequency Window)45

a. SysGen Dual Port RAM Module ..46
b. Control Module: Write Enable (Time Window)47
c. Control Algorithm: wE_time_win ..47
d. Control Module: Read Enable (Frequency Window)............48
e. Control Module: ROI Quantity Control.................................49
f. Control Algorithm: mem_pri ..50
g. Control Algorithm: rE_freq_win..50

 viii

h. Control Module: Accumulator Control (Frequency
Window)...52

i. Control Algorithm: accum_ctrl ..53
C. BIN THRESHOLD ANALYSIS...53
D. DATA MANAGEMENT...55

1. Control Module: Temporary FFT Data Storage56
2. Control Module: Header Generation..58

a. Control Algorithm: hdr_st_mgr ...59
b. Control Algorithm: hdr_out ...59

3. Control Module: Temporary Data Read Control..........................60
4. Control Module: Output Format ..62

E. SUMMARY ..63

V. DESIGN TESTING ...65
A. SINGLE FREQUENCY INPUT TEST ...65

1. 8-Point FFT...66
2. 1024-Point FFT...71

B. MULTI-FREQUENCY INPUT TEST...75
1. 8-Point FFT...76
2. 1024-Point FFT...81

C. MEMORY COMPENSATION TEST ...85
D. LESSONS LEARNED...93

1. Scaling Considerations ..93
2. Machine Epsilon Considerations..97

E. SUMMARY ..100

VI. CONCLUSION ..101
A. CONCLUSION ..101
B. RECOMMENDATIONS...102

LIST OF REFERENCES..105

INITIAL DISTRIBUTION LIST ...107

 ix

LIST OF FIGURES

Figure 1 . Received IF Energy (Conceptual). ...3
Figure 2 . Signals of Interest (Conceptual). ..4
Figure 3 . Compressed Output (Conceptual). ...4
Figure 4 . Bin Dimensions (Conceptual). ...5
Figure 5 . Time-Based vs. Sample-Based Signals. ...10
Figure 6 . SysGen M-code Module...15
Figure 7 . Simulink to SysGen Comparison. ..15
Figure 8 . SysGen System Generator Module Interface. ..16
Figure 9 . SDR Modules. (Conceptual). ..19
Figure 10 . Bin Energy Calculation Module (Conceptual). ..21
Figure 11. Input Signal Compared to FFT Analysis...22
Figure 12. FFT Data Converted to Energy. ..23
Figure 13. Time Windowing Process..25
Figure 14. SysGen SDR Module. ...35
Figure 15. SysGen FFT v4.1 Module Timing Diagram..37
Figure 16. SysGen FFT Module (N = 8)...38
Figure 17. Control Module: Bin Energy Calculation..42
Figure 18. Control Module: Energy (FFT Index). ..42
Figure 19. Control Module: Energy (Time Window)..43
Figure 20. Control Module: Energy (Frequency Window). ...45
Figure 21. SysGen Dual Port RAM Module...46
Figure 22. Control Module: Write Enable (Time Window). ..48
Figure 23. Control Module: Read Enable (Frequency Window)...49
Figure 24. Control Module: ROI Quantity Control. ...50
Figure 25. Control Module: Accumulator Control. ..52
Figure 26. Control Module: Bin Threshold Analysis. ...54
Figure 27. Control Module: Data Formatting. ..56
Figure 28. Control Module: Temporary FFT Data Storage..57
Figure 29. Control Module: Header Generation. ..58
Figure 30. Control Module: Temp Data Read Control. ..61
Figure 31. Control Module: Output Format..62
Figure 32. Single Frequency Input Test (N = 8 / k = 1 / ROI = 1).67
Figure 33. Single Frequency Input Test (N = 8 / k = 2 / ROI = 2).68
Figure 34. Single Frequency Input Test (N = 8 / k = 3 / ROI = 3).69
Figure 35. Single Frequency Input Test (N = 8 / k = 1 / ROI = 3).70
Figure 36. Single Frequency Input Test (N = 1024 / k = 1 / ROI = 1).72
Figure 37. Single Frequency Input Test (N = 1024 / k = 3 / ROI = 3).73
Figure 38. Single Frequency Input Test (N = 1024 / k = 5 / ROI = 5).74
Figure 39. Single Frequency Input Test (N = 1024 / k = 1 / ROI = 5).75
Figure 40. Multi-Frequency Input Test (N = 8 / k = [1,2] / ROI = [1,2]).77
Figure 41. Multi-Frequency Input Test (N = 8 / k = [1,3] / ROI = [1,2]).78
Figure 42. Multi-Frequency Input Test (N = 8 /k = [1,2] / ROI = [1,3]).79

 x

Figure 43. Multi-Frequency Input Test (N = 8 / k = [1,3] / ROI = [2,4]).80
Figure 44. Multi-Frequency Input Test (N = 1024 / k = [1 , 3] / ROI =[1 , 3]).81
Figure 45. Multi-Frequency Input Test (N = 1024 / k = [1 , 3] / ROI = [1 , 5]).82
Figure 46. Multi-Frequency Input Test (N = 1024 / k = [3 , 5] / ROI =[3 , 5]).84
Figure 47. Multi-Frequency Input Test (N = 1024 / k = [3 , 5] / ROI = [1 , 4]).85
Figure 48. SDR Output Memory Compensation (Test 1)...88
Figure 49. SDR Output Memory Compensation (Test 2)...90
Figure 50. SDR Output Memory Compensation (Test 3)...92
Figure 51. FFT Period (Parameter)...94
Figure 52. Nscale (Parameter). ..95
Figure 53. FFT Inputs Requiring Change. ..98

 xi

LIST OF TABLES

Table 1. Control Signal: Threshold Analysis..27
Table 2. Input Signals: SysGen FFT Module v4.1. ..39
Table 3. Output Signals: SysGen FFT Module v4.1...40
Table 4. Output Signals (pwr_time)..44
Table 5. IO Signals: Dual Port RAM..46
Table 6. Control Algorithm: hdr_st_mgr..59
Table 7. Storage Devices (Design Analysis Data)..96
Table 8. Address Generation Algorithms. ..97
Table 9. Modules Affected by Changes to Numerical Binary Format.99

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Government and military organizations rely heavily on the ability to transmit and

receive radio signals via communications techniques that incorporate varying degrees of

complexity. As a result, advances in communications techniques and digital signal

processing (DSP) technology create an ongoing requirement for research and

development (R&D), which is both costly and time consuming. These factors contribute

to the fact that new radio communications systems often lag behind their operational

requirements. In the traditional digital hardware development model, application-specific

integrated circuits (ASIC) are designed in order to optimize a radio’s performance

parameters. The downside of this model is that hardware optimization generally requires

replacing hardware, which is both costly and logistically challenging.

The growing field of software defined radio (SDR) addresses some of the

limitations imposed by traditional ASIC implementations. SDR designs are developed

such that software is used to configure hardware, as needed, to perform different

functional operations. This unique capability allows newly developed radios to provide

greater technological flexibility. Field programmable gate arrays (FPGAs) have become a

key industry component for the development of the hardware logic operations performed

in SDR-based systems. As a result, R&D efforts have started to incorporate FPGA-based

designs where operationally reasonable. There are existing wideband communications

systems that are especially well-suited for these designs. Unfortunately, some of these

systems are functionally restricted by relatively limited output bandwidths.

This thesis was conceived to mitigate the restrictions imposed on FPGA-based

designs by external input-output (IO) bandwidth mismatches. Efforts were focused on

understanding the requirements to design, build, and test an FPGA-based SDR that could

process sampled wideband intermediate frequency (IF) signals and compress the input

based on reprogrammable parameters. IF signals are often used in communications

systems to modulate and process a carrier signal at a frequency lower than the radio

frequency (RF) transmission band. The lower IF frequencies allow modulated signals to

 xiv

be processed at a reduced cost in terms of operational speed and hardware requirements.

When appropriate, IF signals can be up-converted to the RF band for transmission or

down-converted from the RF band for processing purposes.

The design concept was based on compartmenting sampled IF data into operator-

defined time-frequency bins and then comparing the energy in each bin to its independent

energy threshold, also specified by the operator. The fast Fourier transform (FFT) served

as the central element of the signals analysis process. Based on this framework, signal

data related to bins without sufficient energy are discarded. This process resulted in a

flexible, automated compression scheme that can more efficiently utilize the output

capacity of a system affected by an IO bandwidth mismatch.

The algorithm was designed and tested using Xilinx’s System Generator (SysGen)

software, which functions as an integrated component of MathWorks’ Simulink

environment. The tool was also used to synthesize the design, perform the place-and-

route functions, and generate the binary file that provides the design's configuration

information for the target FPGA. SysGen provided a layer of abstraction that reduced the

requirement for programming experience in a hardware description language (HDL). If

the design had more stringent timing requirements, the ability to code in a HDL would

have been more important.

Two versions of the algorithm were built and tested. The first utilized an 8-point

FFT, which simplified analysis efforts. The second version utilized a 1024-point FFT and

helped verify the requirements for scaling the design. Both versions were tested using

single-frequency and multi-frequency input signals, without restrictions on the output

memory. This ensured the basic compression scheme operated properly. The 1024-point

algorithm was used to verify the design could automatically adjust its operational mode if

available storage capacity became limited. Testing provided valuable insights regarding

the effects and workarounds for machine epsilon. Machine epsilon is defined as the

smallest positive number that a digital system can recognize and generate. When

combined with rounding or truncating, machine epsilon can lead to numerical

calculations that should mathematically equal zero but result in other values. If not

 xv

properly addressed, this digital error could be catastrophic to a design’s operational

utility. Testing also verified the design’s desired functional operations.

Although the final design operated as expected, it has performance limitations that

should be recognized and considered. All of the development tests were conducted such

that the digital input frequencies and the defined bin frequencies were an exact match. If

frequencies that did not match the FFT window, i.e., frequencies that did not have an

integer number of cycles per FFT window, were used there would be a slight smearing

effect in the frequency domain. It is assumed that this effect is minor, and would not

significantly impact the efficacy of the algorithm. The tests also assumed the input signal

and the SDR shared the same sample frequency. If this were not the case, the

implementation could correct for this by appropriate interpolation or decimation, or

similar multirate signal processing.

Based on the resources available at the beginning of this effort, the SDR was

developed for the Xilinx, Virtex-4 FPGA. While this can potentially affect the portability

of the design, only one component was used that is not backward compatible to the

Xilinx Virtex-1 FPGA. As a result, the workaround requires only minor changes to two

affected design components. The research and development process used for this thesis

resulted in a simple, FPGA-based signal compressor that can be tailored by operators via

parameter settings. The design can facilitate more efficient use of the output capacity

available to systems affected by external IO bandwidth mismatches. Despite its simple

nature, the SDR and its components can be optimized and used as a platform for future

development efforts.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I dedicate this work to my wife Rhonda. Her support and encouragement were

instrumental and have changed my life.

I would also like to express my sincere gratitude to Professor Frank Kragh. His

contagious enthusiasm was my first introduction to the SDR concept and his support and

guidance were critical throughout the thesis process.

It goes without saying that I appreciate all the professors and staff that helped

bring this thesis together but I would like to mention a few: Professor Herschel Loomis;

Professor Alan Ross; Professor Roberto Cristi; Professor Alexander Julian; and Donna

Miller.

Thank you.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

There are government and military organizations that rely heavily on the ability to

transmit and receive communications modulations that incorporate varying degrees of

complexity. As a result, advances in communications techniques and digital signals

processing (DSP) technology create an ongoing requirement for research and

development (R&D) that is both costly and time consuming. As mission requirements

shift and resources become limited, be it budget constraints or physical space for a new

system, prioritization of supported technologies becomes critical.

Regardless of how these decisions are made, when radio communications systems

are developed into digital hardware platforms they have traditionally been designed with

application-specific integrated circuits (ASIC) [1]. ASIC designs are beneficial in that

they are built to optimize a radio’s performance parameters such as speed, power

consumption, physical size, etc. However, since ASIC hardware is optimized for a

specific set of technologies, once a system has moved through the R&D process into

production there is limited flexibility to augment its capabilities. Keep in mind that it

often takes years to get from a design concept to the production phase [2]. As a result,

there is a lag between the generation of an operational requirement and the availability of

a viable system. In light of the fact that communications techniques and the capabilities

of digital processing systems are constantly changing, the delays and limitations

associated with traditional communications hardware development requires special

attention.

A growing field within the communications industry referred to as software radio

provides an ideal solution for the limitations of ASIC hardware development. As opposed

to working with hard-wired electronic components that are designed for specific

modulation techniques and data packet structures, software radio designs offer varying

degrees of flexibility. Within industry, the term software radio is often used to describe “a

radio that is substantially defined in software and whose physical layer behavior can be

 2

significantly altered through changes to its software” [3]. This means that the radio’s

functional capability can be changed, on demand, based on existing operational

requirements.

In comparison to traditional radio development, the physical hardware used for

SDR designs requires a more dynamic range of flexibility and capability [3]. Field-

programmable gate arrays (FPGA) provide a high degree of flexibility with respect to

implementing logical algorithms in hardware. As a result, many new radio development

efforts have started to incorporate FPGA-based SDR designs where it is operationally

reasonable. There are some existing wideband communications systems that are

especially well suited for these designs as they can potentially accommodate a large

spectrum of communications techniques. Unfortunately, some are functionality restricted

by relatively limited output bandwidths.

B. OBJECTIVE

This thesis was conceived to help mitigate the restrictions imposed on FPGA-

based designs by external input-output (IO) bandwidth mismatch. R&D efforts were

focused on the requirements to design, build, and test an FPGA-based SDR for a system

that can receive wideband intermediate frequency (IF) signals and generate output with

only specific portions of the original input signal. IF signals are often used in

communications systems to modulate and process carrier signals at a frequency lower

then the radio frequency (RF) transmission band. The lower IF frequencies allow

modulated signals to be processed at a reduced cost in terms of operational speed and

hardware requirements. When appropriate, IF signals can be up-converted to the RF band

for transmission or down-converted from the RF band for processing purposes.

Based on the design requirements, the signal compressor’s output must be

determined in a dynamic, automated fashion in accordance with programmable control

parameters and relevant properties of the received signal. In doing so, the SDR will better

utilize a wideband system’s limited output bandwidth.

 3

C. SDR DESIGN OVERVIEW

The basic design goal was to develop a software defined radio (SDR) that is able

to process wideband IF composite signals, compress the signals based upon operator-

defined parameters, and store the relevant information for future processing. Figure 1

through Figure 3 provide a graphic representation of the general concept. As a high-level

example, Figure 1 depicts the time-frequency distribution of IF energy received by the

radio. The boxes in Figure 2 represent three distinct time-frequency bins of interest to an

operator. When all bins are considered together, they are referred to as a bin set. Prior to

initializing the SDR, operators will define independent thresholds for each bin. Assuming

the top two bins in Figure 2 meet or exceed their established thresholds and the bottom

bin does not, Figure 3 shows the compressed data set that would be stored for future

processing.

Figure 1 . Received IF Energy (Conceptual).

 4

Figure 2 . Signals of Interest (Conceptual).

Figure 3 . Compressed Output (Conceptual).

A simple scheme is used to implement the compression mentioned above. The

scheme is built around the idea of bins being defined by time and frequency coordinates.

Each bin (b) is defined with independent parameters. Using Figure 4 to illustrate the

concept, the first bin, 1b = , is defined between frequencies 1 2and f f for a duration of 1T

seconds, while the third bin, 3b = , is setup to analyze frequencies 3f through 4f for a

duration of 3T seconds. The main point is that each bin can be tailored to analyze a

 5

unique set of IF signal characteristics. This flexibility is provided in order to enable

tailored detection of different modulation techniques, ranging from burst communications

to frequency-hopped transmissions.

Figure 4 . Bin Dimensions (Conceptual).

In practice, an operator sets frequency and duration parameters for each bin and

then establishes independent energy thresholds for each. With this information, the radio

is able to process and analyze IF signals and then store information relative to bins that

meet or exceed operator-defined thresholds. Information associated with bins that do not

meet established thresholds will be discarded. In this way, signal information is

compressed.

D. RELATED WORKS

The work done for this thesis is not directly associated with any other efforts, but

it does relate to two ongoing areas of research and development: spectral analysis of

signal energy and the development of FPGA designs using Xilinx’s System Generator

software tool.

As outlined in the previous section, the SDR design for this thesis is built on the

concept of evaluating the energy in IF signals with respect to time-frequency bins. The

time-frequency (TF) construct that was implemented in the final design was based on a

simple process that will be explained in Chapter III, but it is worth noting that there are

 6

other well-established algorithms for spectral analysis of time-varying (TV) signals. TV

signals are common in real-world applications and have frequency properties that change

with time [4]. Some examples include the impulse response of a wireless

communications channel, radar and sonar acoustic waves, vocals in speech, engine noise,

and jamming interference signals.

Although outside the scope of this thesis, there are numerous methods for

analyzing TV signals. As a brief introduction, the two most common methods are the

Wigner distribution and spectrograms [4]. However, depending on the target and applied

signal properties, other classes of TF analysis may be better suited for providing accurate

signal representations. Some of the more commonly referenced classes include, short-

time Fourier transforms (STFT), quadratic time-frequency transforms, and wavelet

transforms [4,5,6,7,8]. Each class has a set of characteristics that dictate how well it

processes different TF signatures. Since most applications are designed to extract

specific signatures, this should help guide the choice of analysis methods.

As for Xilinx’s System Generator (SysGen) software, a brief description of the

tool and its functional application are provided in Chapter II. The major significance of

the tool is that it enables a model-based method for developing and testing FPGA

designs. This capability greatly reduces the requirement for specialization with the

languages and tools traditionally used for FPGA designs [1]. As a result, hardware and

software engineers of varying backgrounds now have the ability to utilize the flexibility

and parallel computing capacity that are inherent to FPGA hardware platforms [9, 10]. A

short, diverse sample of applications that SysGen has been used to develop includes: An

FM demodulator [11]; a GPS receiver channel [12]; a reconfigurable video encryption

system [13]; a non-coherent frequency shift keying (FSK) transceiver [14]; and a motor

incremental shaft encoder [15]. The tool has gained so much popularity that tools and

design concepts are being developed by external sources to work with the Xilinx software

[16, 17].

 7

E. THESIS ORGANIZATION

This introductory chapter provides brief insight as to the relevance of software

defined radios and FPGAs in today’s rapidly changing communications environment.

The chapter then highlights the effects of external IO bandwidth mismatches on modern

communications radios and introduces the design concept used in this thesis to mitigate

the associated technical issues. Finally, the chapter highlights time-frequency analysis

options and the broad applicability of Xilinx’s System Generator software.

Chapter II, Design Considerations, highlights the key concepts and tools used to

develop the design. The chapter provides a brief overview of Fourier analysis, FPGAs,

FPGA design flow, and the Xilinx System Generator (SysGen) software, which was used

as the development environment.

Chapter III, Conceptual Design Model, provides a conceptual description of the

modules and data management strategies used to develop the SDR design. The major

modules discussed include Bin Energy Calculation, Bin Threshold Analysis, and Data

Management.

Chapter IV, Design Implementation Details, focuses on implementation of the

conceptual model in the SysGen development environment. Detailed descriptions of each

design element are provided in context with its parent modules and any interrelated

components.

Chapter V, Design Testing, explains the tests used to validate the designed SDR’s

functional operations. The chapter then provides test results and analysis.

Chapter VI, Conclusion, summarizes the body of work captured in the thesis and

then provides recommendations for future work that could enhance the SDR design.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. DESIGN CONSIDERATIONS

In order to design the SDR that was discussed in the previous chapter, a few key

concepts and design tools proved to be instrumental. This chapter will provide a brief

overview of these elements to include Fourier analysis, FPGA Basics FPGA design flow,

and Xilinx’s System Generator tool.

A. FOURIER ANALYSIS

When working with electronic signals, it is often necessary to analyze the

different frequencies present in the signal. To do so, it is common practice to utilize some

form of Fourier analysis to translate the signal from its time domain representation into a

frequency domain representation. The Fourier transform (FT) and its inverse (IFT) are

ideal algorithms when working with continuous signals. For digitally sampled signals, the

discrete Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT) are

ideal for working between domains. Definitions for each of the transforms are provided

below [18].

The function ()g t , where t represents time, will be used in this section as the

time domain representation of the signal. The Fourier transform, ()G f , of the signal,

where f is an analog frequency, is the frequency domain representation of the signal.

 2() FT{ ()} () j tfG f g t g t e dtπ
∞

−

−∞

= = ∫ (II.1)

The inverse Fourier transform can be used to translate back to the time domain.

 2() IFT { ()} () j tfg t G f G f e dfπ
∞

−∞

= = ∫ (II.2)

Since the design for this thesis will work with signals that are sampled at a specific

sample frequency (sF), the signal must also have a sample-based representation, []g n .

The functions ()g t and []g n are related based on the system's sample period, sT , which

is the inverse of the sample frequency.

 [] ()sg n g nT= (II.3)

 10

To better understand the relationship between ()g t and []g n , refer to Figure 5 [18].

Figure 5 . Time-Based vs. Sample-Based Signals.

The sample-based representation of the signal is used in the DFT algorithm to
derive the digital frequency domain representation,

1

(2 /)

0

1[] []
N

j N kn

n
G k g n e

N
π

−
−

=

= ∑ (II.4)

where N equals the number of samples in the analysis period and k represents a digital

frequency between 0 and 1N − . The digital frequency can be mapped to an analog

frequency based on the sample frequency, and the analysis period, N

 skFf
N

= (II.5)

The IDFT can be used to translate from the frequency domain back to the sample-based

representation,

1

(2 /)

0
[] []

N
j N kn

k
g n G k e π

−

=

= ∑ (II.6)

where n is between 0 and 1N − [18].

 11

For this design, three properties of Fourier analysis need to be highlighted. First,

when a signal is sampled in the time domain, its DFT is periodic, with period N . As a

result of this repetitive relationship and in accordance with Nyquist’s sampling theorem

[3], the signal’s bandwidth (bF) must be less than half the sample frequency, sF .

2

s
b

FF < (II.7)

Otherwise, the frequency spectrum can not be represented without interference called

aliasing. This fact dictates that / 2sF is the highest analog frequency that should be

evaluated using the DFT. The second property worth noting relates to the analysis

period, N , of the DFT. More samples in an analysis period yields greater frequency

resolution. The third property relates to the conjugate symmetry of the DFT. If the

sampled signal, []g n , is real-valued, then its DFT has conjugate symmetry, i.e., [18]

 [] *[]G k G N k= − . (II.8)

Another point worth noting is the DFT as presented in Eq. (II.4) requires
2N numerical operations for the straightforward calculation. Several algorithms referred

to as fast Fourier transforms (FFTs) were created to generate the numerical values of the

DFT, but in fewer operations. As opposed to 2N operations, FFT algorithms require only

log ()N N operations for a period of N samples [18].

B. FPGA BASICS

Field-programmable gate arrays (FPGAs) are semiconductor devices containing

logic components and interconnects that are both programmable. Together, these

elements can be combined to perform simple gate level logic operations (AND, XOR,

etc), or more complex combinational logic functions. Although FPGAs are usually

slower and draw more power than ASIC designs [1], the ability to reprogram an FPGA

gives the device great versatility and inherent advantages. For instance, it generally takes

less time to develop an FPGA based product for the market place [2,10]. FPGAs allow

developers to upgrade systems and fix bugs without requiring hardware changes and with

less design cost. As an additional benefit, the architecture of an FPGA enables designs to

perform multiple computational operations in parallel. Parallelism allows for

 12

considerable data throughput at relatively low clock rates. These characteristics have

proven especially useful in the fields of aerospace and defense systems, ASIC

prototyping, digital signal processing, and software-defined radio (SDR) [10].

C. FPGA DESIGN FLOW

The design process for working with an FPGA can generally be broken into four

basic steps. First, define and verify the functional behavior that the hardware is expected

to implement. Next, synthesize the design so the logical description is translated into a

structural model. Once synthesis is complete, implement a process called place-and-route

and generate a binary (bin) file, which contains the configuration information that will be

loaded onto the physical FPGA platform. Finally, load the bin file onto the target

platform and test the design using physical signals, as opposed to computer generated

stimulus [19,20,21].

1. Define and Verify Functional (Logical) Behavior

In simple terms, an FPGA’s functional behavior is a model that defines the

system’s high-level logical operation. This model defines system inputs, the process and

order for working with the relevant signals, and system outputs. It is important to note

that this high-level model should consider all relevant requirements such as physical

constraints, performance, interface, cost, power, etc. Once all these elements are put into

the proper perspective, designers can effectively define and test the logical operations of

their desired system.

In order to define functional behavior, designers select the best suited logical

components, or build them if required. Then component connections are established in

conjunction with a meaningful order of operations. There are a variety of tools available

for working through this process, but they all must capture the design parameters using a

hardware description language (HDL). It is worth noting that there are two industry

standard HDLs: Verilog and Very High Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL). There are advantages to each, but that discussion is

outside the scope of this thesis. Regardless of which language or tools are used to define

 13

functional behavior, it is important to ensure all the intended logical operations are

performed. Therefore, as the system is being designed, it is wise to build and run

simulations as an iterative process.

2. Synthesis

Synthesis is a two-step process that takes a high-level behavioral model and maps

it according to the design’s established interconnections. There are a variety of synthesis

tools on the market, but their principal functions are all the same. The first step in the

synthesis process involves verification of code syntax used in the behavioral model. Once

the syntax is deemed correct, the functional description is translated to a structural model.

This new model is captured in the form of a netlist, which defines connections and

constraints between the components in an electronic design.

3. Place-and-Route (PAR)

The next step toward the physical implementation of the design is referred to as

Place-and-Route (PAR). During the PAR phase, connections outlined in the netlist are

translated into gate level logic that consisting of lookup table (LUTs), flip flops (FF),

memory blocks, and input/output (IO) modules. This process is directly correlated with

the target FPGA. Point being, if the same netlist were used in multiple FPGA types, the

PAR results would be unique for each. The translation of connections serves as a bridge

between the logical design and the physical implementation. The output of the PAR

process is used to generate the .bin file that is loaded onto the target FPGA.

4. Testing

Once the .bin file is loaded onto the target platform, the final step in the design

process involves verifying the FPGA correctly implements the configured operations

within the required specifications.

 14

D. SYSTEM GENERATOR (SYSGEN)

SysGen is a schematic based design tool that enables graphic modeling and

simulation of FPGA behavior. The software suite can also be used for synthesis, PAR,

and generation of the binary file that is loaded onto the target FPGA board. The software

suite was designed to work seamlessly within MathWorks’ Simulink modeling

infrastructure. SysGen provides libraries of optimized Intellectual Property (IP) cores that

can be graphically connected and configured. An IP core is a reusable block of code,

often a generic netlist that protects a vendor against reverse-engineering. Throughout this

paper, System Generator’s IP cores are referred to as SysGen modules. The SysGen

libraries are integrated into the Simulink library. When a library is selected, the SysGen

sublibrary icons are clearly distinguishable by an outlined ‘X’ icon that indicates

"Xilinx."

In a fashion similar to Simulink, all SysGen modules can be configured by double

clicking the associated icon and updating the appropriate parameters. A major distinction

for SysGen modules is that each has HDL code embedded in its definition. This

minimizes the developer’s requirement to generate code for each independent

component. This layer of abstraction can reduce development time and the learning curve

required for basic systems design. If a necessary component does not exist in the SysGen

library, it is possible to develop a software algorithm using MATLAB code (M-code) and

later use SysGen’s functional capability to translate the code into the desired HDL format

(VHDL or Verilog). This functionality is enabled by the SysGen M-code module shown

in Figure 6. Once an M-code algorithm is developed and associated with a SysGen M-

code module, it performs its designed logical behavior in concert with the other SysGen

modules in a design. Despite the obvious benefits of the SysGen suite, Xilinx does not

recommend its use as a complete replacement for HDL coding. They encourage hands-on

coding for parts of a design that require management of internal hardware clocks [20].

 15

Figure 6 . SysGen M-code Module.

As a visual overview of how the SysGen suite works, observe Figure 7. The red

box in the upper left hand corner contains a model designed using Simulink components.

The system multiplies a sine wave by a random number and then adds a constant to the

product. The final output signal can then be viewed graphically using the Simulink scope.

Figure 7 . Simulink to SysGen Comparison.

 16

The system contained in the black box is functionally identical to the Simulink

model, but it is built using SysGen modules. The only major difference is that the System

Generator model requires Gateway modules to signify FPGA IO ports. It also requires the

SysGen System Generator module, circled in green, which is used to initialize the model

and specify how code generation and simulation should be handled. Assuming all other

parameters in the two models match, their simulation results would be identical. This

commonality allows SysGen simulations to be compared to the bench mark results

generated from a Simulink models. It can also reduce the effort normally required to

write test benches for HDL designs.

 Once a SysGen design’s functional behavior has been tested to satisfaction, the

software suite can then generate several useful system level outputs to include HDL, a

netlist, or even a .bin file. To specify the desired output, a designer simply selects the

appropriate format from the ‘Compilation’ parameter in the SysGen System Generator

module’s interface as illustrated in Figure 8. If an HDL Netlist were chosen, as shown in

the figure, the software would generate an HDL file that could be utilized in a variety of

development tools. For this thesis, SysGen was used to generate a .bin file so the

compilation parameter was set to ‘Bitstream’.

Figure 8 . SysGen System Generator Module Interface.

 17

The SysGen System Generator module is also used to specify other critical design

parameters such as FPGA chipset, desired HDL format, clock rate, and more. Once all

the required values are specified, the desired output file is produced by clicking the

‘Generate’ button located in the lower left-hand corner of the System Generator module’s

interface. The specified output file format is then created and stored in the Target

directory specified within the interface.

E. SUMMARY

This chapter highlights the concepts that were relevant to the SDR design process:

Fourier analysis, FPGAs, the FPGA design flow, and Xilinx’s System Generator

(SysGen). Of all the topics discussed, the fast Fourier transform (FFT) and SysGen

software tool are the two most central elements of this design’s overall development

process. The next chapter provides a conceptual description of the modules and data

management strategies used to develop the design.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. CONCEPTUAL DESIGN MODEL

In order to develop the SDR outlined in the first chapter, a design was built

around the conceptual model shown in Figure 9.

Figure 9 . SDR Modules. (Conceptual).

Each module’s basic functionality is outlined below, but more detailed

descriptions are provided in Sections III.A through III.E:

• Signal: A pre-demodulated (pre-D) IF signal is applied to the

system input

• FFT: The IF input signal is processed through a fast Fourier transform

(FFT) so that it can be analyzed in the frequency domain

• Bin Energy Calculation: The input signal’s frequency domain

information is associated with the appropriate operator-defined bins. Once

all the data points for each bin are processed, energy in each bin is

calculated for use in the Bin Threshold Analysis module. Operators will

also have the ability to prioritize the relative importance of each individual

bin. This will be useful in the final Data Management module.

 20

Note: FFT signal data are stored in temporary memory for use in later

stages of the design.

• Bin Threshold Analysis: First, each bin is analyzed and its energy is

compared to its established threshold. Then, control data pertaining to bins

with sufficient energy are generated and passed to the Data Management

module.

• Data Management: Control data are used to manage four interrelated

processes:

o Read FFT signal data from temporary memory ;

o Compress the dataset so it only includes information associated

with bins that meet threshold requirements;

o Store the compressed dataset in final output memory;

o Manage available output memory.

The following sections cover the general strategies used to design the modules

outlined above.

A. SIGNAL

For testing purposes, IF input signals are generated digitally and passed through

the system. Sinusoids of known frequencies are used as examples throughout this paper.

B. FFT

The FFT module is the first interface between the IF input signal and the rest of

the design. The output of the module consists of both real (X) and imaginary (Y)

components. For a given output sample, both components share the same FFT index, k ,

which will always fall between the values of zero and one less than the number of points

per FFT (N).

 0 1k N≤ ≤ − (III.1)

 21

Although the concepts will make more sense after reading the upcoming sections

on windowing, it is important to know that all FFT data points are associated with both

time and frequency windows. To manage these relationships, FFT data are stored in

multiple vectors and the notational descriptions are provided in the relevant sections.

C. BIN ENERGY CALCULATION

In order to analyze the bins as depicted in Figure 4, it is necessary to examine the

IF input in terms of its frequency and time components. First, input signals are passed

through an - pointN FFT for analysis in the frequency domain. All FFT data are stored

in temporary memory for processing in a later stage. Once in the frequency domain,

signal energy can be calculated with respect to both time and frequency windows. Figure

10 shows the conceptual model used to calculate energy values.

Figure 10 . Bin Energy Calculation Module (Conceptual).

1. Time Windowing

A few things should be noted about the relationship between sample

frequency, sF , and time windowing for this design. First, the sF of the input signal and

FFT module are assumed to be equal. This means that the smallest continuous block of

time, or minimum time-window, that can be analyzed (minT) is a function of the FFT

period, N , and the sample time (1/s sT F=),

 22

 min s
s

NT NT
F

= = (III.2)

This also means that for this design, an operator-defined time-window period (T) must

be an integer (M) multiple of minT ,

 min
s

MNT MT
F

= = (III.3)

As an example of how this works, if 3µs sT = and 8N = then 8 x 3µs =24µs minT = .

Therefore, all time-windows must be multiples of 24 µs (i.e., T must be 24, 48, 72, etc.).

Figure 11 gives a visual example of how the process works using 3M = to

determine T . The input signal shown in figure’s the top graph,

 sin 2 , where [0,1,2,..39]
8
n nπ⎛ ⎞ =⎜ ⎟

⎝ ⎠
 (III.4)

will be used as the reference input throughout this thesis. It has a period of 8 samples, so

to simplify analysis an 8-point FFT is utilized.

Figure 11. Input Signal Compared to FFT Analysis.

 23

This method of time windowing is used to facilitate the design’s energy

calculation process. The first step involves calculating the energy at each FFT index (k).

The is done by adding the squared FFT values of the real, ()X k , and imaginary, ()Y k ,

index components and storing the value in ()E k ,

 2 2() () ()E k X k Y k= + (III.5)

Based on the input signal in Figure 11, the real component of the FFT is zero, so

it will not be mentioned in later analysis. Figure 12 shows the general concept covered in

Eq. (III.5).

Figure 12. FFT Data Converted to Energy.

Each ()E k value is stored in memory so that it can be appended to a vector that

represents the energy values, ()minE m , in an FFT period,

 () [(0), (2) , ... , (1)]min m E E E N= −E (III.6)

 24

The index m indicates which FFT period is being processed. These vectors are stored in

memory so the energy in the operator-defined time window, ()time wE , can be calculated.

1

() ()
M

time min
m

w m
=

=∑E E (III.7)

The index w indicates which operator-defined time window sequence being processed.

The notation (),time w kE is used to reference the thk index within the vector. Each w

index is associated with a set of m indices, ()wm , and the relationship is a function of

M , the number of FFT periods in a time-window

 () [(1) 1, ... ,]w w M wM= − +m (III.8)

The notation (,)w km is used to reference the thk component of the vector.

Equaton (III.7) represents a vector-based accumulation of the ()min mE values.

Analysis of the input signal in Eq. (III.4) will be used to illustrate the ()time wE

calculation process.

• Energy during FFT periods:

Based on the bottom graph in Figure 12, the energy spectrum for each FFT period

is equal, so the associated ()min mE vectors are also equal. As the data in the

figure illustrates, (1) (2) (3) [0,16,0,0,0,0,0,16]min min min= = =E E E .

• ()time wE energy calculation:

In accordance with Eq. (III.6), the values in each ()min mE vector are added by

index. As a result, () () []
3

1

1 0,48,0,0,0,0,0,48time min
m

m
=

= =∑E E . Figure 13 is

provided as a visual example of the process.

 25

(Energy Calculations) (Vector-Based Accumulation)

Figure 13. Time Windowing Process.

In order to reference the thk component in an ()timeE w vector, the notation (,)timeE w k will

be used. The vector will always have N total indices starting at zero (analogous to FFT

indices).

Referring back to the overview in Section III.B, FFT data values from a specific

FFT period are stored in ()min mX and ()min mY vectors,

 () [(1) , (2) , ... , ()] min m X X X N=X (III.9)

 () [(1) , (2) , ... , Y()] min m Y Y N=Y (III.10)

In order to reference the thk component in either vector, the notation (,)m kX and

(,)m kY will be used. These vectors are then used to generate vectors

()time wX and ()time wY , which represent time-windows

 ()() ()() ()() -1 1 , 1 M+2 , ... , time min min minw w M w wM⎡ ⎤= + −⎣ ⎦X X X X (III.11)

 ()() ()() ()() -1 1 , 1 M+2 , ... , time min min minw w M w wM⎡ ⎤= + −⎣ ⎦Y Y Y Y (III.12)

In order to reference the thq component in either vector, the notation (),time m qX and

(),time m qY will be used where

 1 q NM≤ ≤ . (III.13)

 26

2. Frequency Windowing

Once the energy for a time window is calculated, it is possible to determine the

energy in frequency ranges of interest, which equate to energy in bins (binE). The 8-point

FFT analysis above will be used to illustrate the process of frequency-based calculations.

Recall from Section II.A that an 8-point FFT length dictates that 4k = is the maximum

digital frequency that can be detected unambiguously. Likewise, if the digital frequency

of interest is 1k = , then values captured in indices 1 and 7 provide relevant information.

Since the SDR’s IF input signal is a real signal, the FFT is conjugate symmetric so the

FFT values for 1 / 2 5k N≥ + = are redundant and can be disregarded. As a result, FFT

indices between zero and half the FFT period, / 2N , are used to manage energy

calculations.

First the operator defines the digital start and stop frequencies for each range of

interest (ROI) and the values are stored in the vector, ()bROI . Next, the FFT indices

associated with a ROI are stored in a vector, ()bL . The notation (),b lL is used for the

thl component in the vector. The variable l represents an index in the ()bL vector,

which can range from one to the total number of indices associated with the bin, maxl .

Finally, the values in ()time wE that coincide with the indices in ()bL are added by index.

The resulting sum is equal to the total energy within a frequency range and equates to the

energy in the bin, (),binE w b

max

1
(,) (, (,))

l

bin time
l

E w b w b l
=

=∑E L (III.14)

Unlike Eq. (III.7) which is vector addition Eq. (III.14) is defined as the sum of the

components within a single ()timeE w vector, which results in a scalar. For example,

assume an operator is interested in two digital frequency ranges such that

() []1: 2=ROI 1 and () []2 3=ROI . Since the IF input signals are real signals, the

resulting FFT data is conjugate-symmetric. As a result, when working with an 8-point

 27

FFT () []1 1,2=L and () []2 3=L . Based on the ()1timeE vector calculated in Section

III.C.1,
2

1

(1,1) (1, (1,))bin time
l

E l
=

= =∑E L 48 0 48+ = and () ()()
1

1,2 1, 2, 0bin time
l

E l
=

= =∑E L .

D. BIN THRESHOLD ANALYSIS

Once the bin set has been fully processed, energy values for each bin are

compared to their operator-defined thresholds, ()H b . If any of the bins meet or exceed

their threshold, then the time window index, w , and other relevant control data are

stored. A complete list of control data are provided in Table 1. Once all the bins have

been evaluated, an analysis flag is generated to indicate that a bin set’s data are ready for

compression and storage in the Data Management Module.

Table 1. Control Signal: Threshold Analysis.

Control Data Purpose

_anal fl Flag indicates that a bin set has been processed and the dataset is ready for

compression

anal_qty(w) Vector containing the number of bins that meet or exceed their threshold

()wanal_ROI Vector containing the ROIs that meet or exceeds their threshold

To better understand how the Threshold Analysis Module works, the (),binE w b

example from the previous section is continued. Assume the bin thresholds are

()1 43H = and ()2 50H = :

• Bin energy comparisons

In the previous example, the energy for the first bin was calculated such that

()1,1 48binE = and the energy in the second bin was calculated such that

()1,2 0binE = . Based on the calculated energies and thresholds for each bin

() ()1,1 1binE H< and () ()1,2 2binE H<

 28

• Generated control data

Since only the first bin met threshold requirements when all bin set data has

been processed and is ready for compression, which is indicated by the

_anal fl control signal, data will only be stored for the first bin. Since this

example involves the first bin set the associated index is set to one, 1w = . The

number of passing bins for the bin set is captured with the ()anal_qty w

vector, so ()1 1anal_qty = . In similar fashion, the passing bin(s) are captured

in the ()wanal_ROI vector, so ()1 1=anal_ROI .

E. DATA MANAGEMENT

When the _anal fl flag is set to indicate that the dataset is ready for

compression, the data management module generates a signal to control the process for

reading FFT signal data out of temporary memory. There are 2N data points per FFT

period (N real and N imaginary). However, as described in Section III.C.2, the SDR is

designed to work with IF signals, which are real in the time domain and conjugate-

symmetric in the frequency domain. This symmetry allows the design to disregard the

redundant data so that only ()2 / 2 1N +⎡ ⎤⎣ ⎦ data points per FFT period are utilized,

()/ 2 1N + values being real and the other ()/ 2 1N + are imaginary. Since there are a

total of M FFT periods per time-window a total of ()2 / 2 1M N +⎡ ⎤⎣ ⎦ data points could

potentially be written to output memory. As a visual reminder of what this means, refer to

Figure 11 and observe the FFT points associated with the three minT periods that comprise

the first time-window.

The primary goal of this design is to reduce the number of data points stored in

output memory. So, instead of storing ()2 / 2 1M N +⎡ ⎤⎣ ⎦ data points every T seconds, this

module will only store values associated with indices in ROIs that meet defined

thresholds. The bin index, b , for each passing ROI is stored in the ()wanal_ROI

vector. To simplify the explanation, the general concept will only be described with

 29

respect to the imaginary data points stored in the vector associated with the time-window

period, ()time wY . As described above, each range has an L vector that contains its

relevant FFT indices. The vectors for each ROI in ()wanal_ROI are used to determine

the imaginary values that will be stored in the final compressed dataset. This process is

broken into two principle steps. First, compile all FFT values associated with qualifying

bins into binY vectors,

() []()
()() ()()

()() ()

, 1, ... , , (1), ... , 2 , ... , , ... ,

 , ,1 , ... , , , , ...

 ... , ,1 , ... , , , , ... ,

bin bin max max max max max

time time max

time time max

w b l l l (M -1)l Ml

w b w b l

w N b w N b l

= +

=

+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Y Y

Y L Y L

Y L Y L

() ()() () ()()
 ...

 ... , 1 ,1 , ... , , 1 ,time time maxw M N b w M N b l− + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦Y L Y L

(III.15)

For ROIs not included in ()wanal_ROI , null vectors are assumed. The second step

involves combining all (),bin w bY vectors to produce the final imaginary output vector,

()out wY , for the bin set,

 () [(,1), (, 2),..., (,)]out bin bin binw w w w s=Y Y Y Y (III.16)

The variable s indicates the total number of bins that are evaluated in a bin set. The exact

same process applies to the real component of the signal data, but the resulting vectors

are designated (),bin w bX and ()out wX .

() []()
()() ()()

()() ()

, 1, ... , , (1), ... , 2 , ... , , ... ,

 , ,1 , ... , , , , ...

 ... , ,1 , ... , , , , ... ,

bin bin max max max max max

time time max

time time max

w b l l l (M -1)l Ml

w b w b l

w N b w N b l

= +

=

+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

X X

X L Y L

X L Y L

() ()() () ()()
 ...

 ... , 1 ,1 , ... , , 1 ,time time maxw M N b w M N b l− + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦X L Y L

(III.17)

 () [(,1), (, 2),..., (,)]out bin bin binw w w w s=X X X X (III.18)

A brief example of how ()out wY is generated will be explained below based on

the input signal and analysis data generated to this point:

 30

• Imaginary FFT values:

Based on the example in Section III.C.1 and Figure 13 the imaginary values

for the first three FFT periods, ()min mY , are all equal. Therefore

() () () []1 2 3 0,4,0,0,0,0,0,4min min min= = =Y Y Y .

• Bin definition and data compression :

Based on the example in Section III.C.2, the first bin was defined such that it

includes the 2nd and 3rd indices of each FFT, which means () []1 1,2=L .

Therefore, in accordance with Eq. (III.15), the vector that contains the

compressed data set for the first bin, ()1,1binY , must contain the 2nd and 3rd

values from each of the ()min mY vectors () []1,1 4,0,4,0,4,0bin =Y

• Final Output

Since the first bin is the only one to meet its threshold requirement, it is also

the only bin represented in the final output data set, ()1outY . As a result

() () []1 1,1 4,0,4,0,4,0out bin= =Y Y .

An important point to take from this example is that instead of 24 imaginary FFT values

for a time-window period of T seconds, only 6 values will be stored in memory.

Therefore compression is achieved.

Without additional data, ()out wX and ()out wY do not provide enough information

for an operator to analyze the system’s output data. To remove all ambiguity, the Data

Management Module generates header data that is stored in the ()whdr vector.

 () [, () , _ () , ()]w w anal_qty w pri fl w w=hdr anal_ROI (III.19)

The ()pri_fl w signal is described in more detail in Section IV.B.3.f, but in

general terms it indicates the design’s operating mode during a bin set’s analysis period.

 31

The vector ()whdr is prepended to the two data vectors ()out wX and ()out wY to create a

more relevant output vector, ()wOut , which is then stored in final output memory.

 () [() , () , ()]out outw w w w=Out hdr X Y (III.20)

If available output memory were to become an issue, the process for compressing

signal data can be altered to reduce expected storage requirements. This is accomplished

by limiting the maximum number of bins per bin set that can be stored in final output

memory. Instead of saving data for all s operator-defined bins, the operator provides a

secondary constant (pris) to indicate the alternate maximum number of bins that can be

stored. The system will be aware of this situation because onboard memory provides a

signal that is used to generate the ()pri_fl w flag once it reaches a specified capacity. In

order to alleviate the problem, the design essentially disregards the lowest priority ranges

of interest, even if they meet established requirements. In practice, that means a bin set’s

final output vector will only include the highest priority signal data. However, the output

header will still indicate that other ROIs met or exceeded their thresholds.

Below, is a more detailed example of how ()wOut is generated. Assume the bin

set has been fully processed and the resulting analysis data is as follows:

• The SDR processed the 7th time-window 7w =

• Calculated bin energies: () () ()1 15; 2 50; 3 46bin bin binE E E= = =

• Operator defined bin thresholds: () () ()1 10; 2 45; 3 40H H H= = =

• Bin set data (Real):

() []7,1 0,1bin =X , () []7,2 2,3,4,5bin =X , and () []7,3 6,7,8bin =X

• Bin set data (Imaginary):

() []7,1 1,2bin =Y , () []7,2 3,4,5,6bin =Y , and () []7,3 7,8,9bin =Y

• Memory shortage indicator is set ()7 1pri_fl =

 32

• In a memory shortage condition, the number of bins to store per bin set is

set to 1 1pris =

Recall:

() () () (), , _w w anal_qty w , pri_fl w w= ⎡ ⎤⎣ ⎦hdr anal ROI

() () () (), ,out outw w w w= ⎡ ⎤⎣ ⎦Out hdr X Y

Based on the bin set data:

(1) (1)binE H> ; (2) (2)binE H> ; and (3) (3)binE H> , which means that all

three bins meet their threshold requirements. In normal operating mode,

this would result in data from all three bins being stored in output

memory. However, since there is a memory shortage, indicated by

()7 1pri_fl = , and since the number of bins to store in a memory

deprived situation is only one, indicated by 1pris = , then only data from

the first bin are stored in final output memory.

As a result:

• Since three bins meet threshold requirements ()_ 7 3anal qty = ;

• Generated header information:

() () () ()
[]

7 7, 7 , _ 7 , _

 7,3,1,1,2,3

anal_qty pri fl= ⎡ ⎤⎣ ⎦
=

hdr anal ROI 7

• Compressed FFT data output:

 (7) [1, 2]out =X and (7) [0, 1]out =Y ;

• Therefore the final output is

[]
[]

(7) (7) , (7) , (7)

= 7, 3, 1, 1, 2, 3, 1, 2 , 0, 1
out out=Out hdr X Y

.

 33

F. SUMMARY

This chapter provides a conceptual description of the primary design modules and

data management strategies used to develop the SDR design. The FFT module processes

the input IF signal so that it can be analyzed in the frequency domain. The Bin Energy

Calculation module then associates the frequency domain data with the appropriate

operator-defined bins. Once the data points for each bin are processed, the energy in each

bin is calculated. The bin energies are processed by the Bin Threshold Analysis module,

which passes analysis data onto the final Data Management module. The final module

controls the process for reading FFT signal data from temporary memory, compresses the

dataset, and stores the compressed dataset in final output memory. The next chapter

focuses on the implementation of the conceptual model in the SysGen development

environment. Detailed descriptions of each design element are provided in context with

its parent module and any interrelated components.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. DESIGN IMPLEMENTATION DETAILS

Chapter III provided an overview of the SDR’s conceptual design elements and

the functional groupings of its signals and data values. This chapter focuses on the design

implementation that was created using the SysGen software environment. Based on the

resources available, the SDR was designed for a Virtex-4 FPGA architecture. Since

hardware resources vary depending on the FPGA architecture, the use of a Virtex-4

affects the design’s portability. However, a majority of the components used in the design

are portable between Virtex-1 and Virtex-5 architectures. Figure 14 illustrates the high-

level modules that constitute the full design. The modular descriptions provided in this

chapter assume the reader has a basic familiarity with MathWorks’ MATLAB and

Simulink development tools.

Figure 14. SysGen SDR Module.

Starting on the left side of the design, there a two SysGen Gateway In modules,

realIF and startIF . These inputs are used to route sampled signal data from an external

source into the design, directly to the FFT module. Since IF signals are always real, the

FFT modules imaginary input is connected to a constant zero. As described in the last

 36

chapter, FFT data are used to calculate energy in the Bin Energy Calculation module and

they are also stored in the Temporary FFT Data Storage module for later compression.

Bin energy calculations are then routed to the Bin Analysis module for comparison to

established thresholds. Finally, analysis data are routed to the Data Formatting module.

The analysis data are then used to manage the compression of FFT data that is stored in

the Temporary FFT Data Storage module. The SysGen Gateway In module finalrE is used

to control when the compressed data are read out of the design and sent out via the

SysGen Gateway Out module Out .

As design elements are described in this chapter, three different types of elements

will be discussed: SysGen IP cores (modules); Control algorithms, which are defined

using MATLAB code and implemented via SysGen M-code modules; and control

modules, which are interconnected compilations of the two.

A. FAST FOURIER TRANSFORM (FFT)

1. SysGen FFT v4.1 Module

The FFT in this design is implemented using the SysGen FFT v4_1 module

shown in Figure 16. The input signals, realIF and the constant zero are first passed

through SysGen Delay modules. The 4z− displayed in each of the modules indicates that

the input signals are delayed by four clock cycles before being applied to the FFT

module’s inputs, _xn re and _xn im .

 _ [] [4] , 4realxn re n IF n n= − ≥ (IV.1)

 _ [] 0xn imag n = (IV.2)

As described in Eq. (II.3), the variable n represents the time index. The delay is included

to compensate for the module’s implementation which injects a four clock delay

 between the output index (xn_index) and the associated output data (xk_re and xk_imag).

Figure 15 illustrates the timing relationship between each of the module’s IO signals.

 37

Figure 15. SysGen FFT v4.1 Module Timing Diagram.

 38

As defined in Eq. (II.4), FFT data values are scaled by the number of points in the FFT,

N . Although the SysGen FFT module is designed to enable the scaling process, the

documented process was not clear during the design’s development. To work around the

issue the module was used without internal scaling, i.e., the scaling feature of the SysGen

FFT module itself was disabled. The FFT module's output therefore was

1

(2 /)

0
[] []

N
j N kn

n
G k g n e π

−
−

=

= ∑ (IV.3)

This implementation differs from the definition in Eq. (II.4) by a scaling factor of 1/ N .

Although in certain applications this could be a trivial matter, it could potentially lead to

memory overflows in this design. As a result, the SysGen Scale modules illustrated in

Figure 16 were utilized to translate the SysGen FFT module’s output data to match the

definition in Eq.(II.4). All resulting data points are stored in RAM for compression in a

later stage of the design. The addressing scheme for this data will be covered in Section

IV.D.3

Figure 16. SysGen FFT Module (N = 8).

The module’s relevant I/O signals are listed in Table 2 and Table 3. These signals

are specific to the SysGen FFT module, but they interface directly with the signals

defined in the previous chapter.

 39

Table 2. Input Signals: SysGen FFT Module v4.1.

Signal Functional Purpose / Description

xn_re

The real component of the input data stream. The driving signal can be

a signed data type of width D with binary point at 1D − , where D is a

value between 8 and 24, inclusive (e.g.: Fix_8_7, Fix_24_23).

()Fix_D_ D -1 indicates a D bit fixed-point numerical word with

1D − bits following the decimal point.

xn_im
The imaginary component of the input data stream. Same format as

_xn re , however for this design the applied input is always zero.

start Set to indicate xn_re and xn_im inputs are valid.

fwd_inv

Dictates whether the module processes input data as an FFT (forward)

or as an IFFT (inverse).

[0] = forward transform.

[1] = inverse transform.

The driving signal must be a Boolean type.

 40

Table 3. Output Signals: SysGen FFT Module v4.1.

Signal Functional Purpose / Description

xk_re The real component of the output data stream.

xk_im The imaginary component of the output data stream.

xn_index Indicates the index of the input data that are being processed.

xk_index

Indicates the index of the output data.

Note: There is a four clock delay between the output index and the

associated output data; refer to timing diagram in Figure 15.

vout
A Boolean signal which indicates whether output data are valid or

invalid.

edone
A Boolean signal that is active high one sample period before the block

is ready to produce the processed data frame.

2. SysGen FFT v4.1 Module Constraints

As outlined in Table 2, the FFT module requires input data (xn_re and xn_im) to

be formatted as a fixed point signed value in the form of ()Fix_D_ D -1 . Therefore, if

D =8 then the input data format would be Fix_8_7 . This formatting requirement dictates

that signal input values applied to the FFT module must have magnitude less than one.

This situation could place a major restriction on the magnitude of signals that are

processed by the design. To compensate for the limitations, the realIF input signal must be

normalized by a constant (c). The actual SDR application will dictate the appropriate

value for the constant, but for testing purposes c is set to 4.

 41

 _ /realxn re IF c= (IV.4)
 _ 0xn imag = (IV.5)

The normalization defined in Eq. (IV.4) is accounted for in the Bin Threshold Analysis

stage of the design.

Another potentially significant constraint of the SysGen FFT v4.1 module is that

it is the only component in the SDR design that is not compatible with Virtex-1 hardware

resources. It is portable to all other Virtex architectures, up to the Virtex-5. If this design

were to be realized on a Virtex-1, this IP core would need to be replaced.

B. BIN ENERGY CALCULATION

As outlined in Chapter III.C, bin energy calculations require three basic steps:

Calculate energy in each FFT index, use those values to calculate the energy in the time

window, and then use the time window values to calculate the energy for each frequency

window. As shown in Figure 17, signal data are routed from the FFT module to the

windowing module, which consists of three energy calculation components. The Energy

(FFT Index) module is responsible for calculating the energy in each FFT index, ()E k .

These values are then passed on to the Energy (Time Window) module, which calculates

energy spectrum for the time-window, ()time wE . That vector is then routed to the Energy

(Frequency Window) module, which is responsible for determining the energy in each

bin, (,)binE b w .

 42

Figure 17. Control Module: Bin Energy Calculation.

1. Control Module: Energy (FFT Index)

As described by Eq. (III.5), the process for calculating energy at an FFT index

involves adding the squared values of the real and imaginary components. This is

implemented using two multipliers and an adder, as shown in Figure 18.

Figure 18. Control Module: Energy (FFT Index).

 43

2. Control Module: Energy (Time Window)

In order to calculate the energy in a user defined time window, it is first necessary

to track and store energy values associated with an FFT period, ()min mE , as described in

Eq. (III.6). Then, on an FFT-index-based level, add the values for each vector associated

with a time window. This is accomplished by working with first-in-first-out (FIFO)

memory, an accumulator, multiplexers, and the pwr_time control algorithm that

manages each element. The implementation can be viewed in Figure 19.

Figure 19. Control Module: Energy (Time Window).

As described in Chapter III.C, a key element to energy calculation in this design is

knowing which data points associate with a time window vector ()time wE and each of its

()min mE vectors. To manage this information and the time windowing process, the

pwr_time control algorithm was scripted using MATLAB code. The module utilizes the

output ready flag, edone , and the discrete frequency signal, xk_index , signals from the

SysGen FFT module to track data indices and control elements of the larger module. As

described in, the edone signal indicates that data for a new FFT period will be generated

on the next clock and xk_index indicates the FFT index, k .

 44

The time windowing process involves storing the energy values of a bin set’s first

()min mE vector into FIFO memory. Then as (1)min m +E values become available, they

are added, by index, to the values stored in memory and the sums are stored in memory.

In theory, this process would repeat for each FFT period in a time- window, which would

be M times. However, in practice the pwr_time control algorithm only repeats the

process M - 1 times and makes a slight revision on the last pass. The final vector,

(1)min m M+ −E is added to the data in memory and the result is ()time wE . Instead of

sending the final vector data to memory, it is routed to the next stage of the design.

During this final stage, the control algorithm also generates signals to indicate when the

energy values for a time-window start (_time st) and when they stop (_time end) being

produced.

The pwr_time control algorithm generates several other control signals to

manage all the components in the Energy (Time Window) control module. A complete

list is provided in Table 4.

Table 4. Output Signals (pwr_time).

Signal Functional Purpose / Description

_time wE Control when data are written to memory.
_time rE Control when data are read from memory.

_add mux
Control signal for MUX_Adder.

Dictates which form of the data input stream is sent to the accumulation
circuit.

_mem mux

Control signal for MUX_Memory.

Dictates whether data written to memory is directly from ()indE i or the
Accumulator.

_time st Indicates the first output data point associated with a time-window.
_time end Indicates the last output data point associated with a time-window.
_time val Control signal for MUX_Output.

 45

3. Control Module: Energy (Frequency Window)

As described in Chapter III.C.2, the process for calculating energy in a frequency

window involves index-based analysis of the values in ()time wE , as illustrated in (III.14).

To carry out this analysis, the vector data are first stored in random access memory. To

manage how this information is stored, the Write Enable (Time Window) module was

designed to control the input addressing scheme. Next, the stored energy values are read

out of memory and summed in accordance with the bin indices stored in each of the ()bL

vectors. The resulting values represent the energy in each bin, (,)binE w b . Two distinct

control mechanisms were designed to facilitate this process. The first, Read Enable

(Frequency Window), facilitates the process of reading data from memory. The second

control module, Accumulator Control, is used to manage the accumulators that

calculate (,)binE w b . The entire frequency windowing module can be seen in Figure 20,

and more specific details are provided in the following sections.

Figure 20. Control Module: Energy (Frequency Window).

 46

a. SysGen Dual Port RAM Module

The SysGen Dual Port RAM module displayed in Figure 21 is used to

store the time-window energy values, ()time wE .

Figure 21. SysGen Dual Port RAM Module.

The benefit of the module is that it enables simultaneous access to two

separate memory spaces, at different sample rates. This allows data to be written or read

from one address (A), while data are read or written to a separate location (B). These

functions are managed with control signals listed in Table 5.

Table 5. IO Signals: Dual Port RAM.

Signal Functional Purpose / Description

_addr a Controls the address for memory location A.

_din a Data to be written to memory location A.

_wE a Write enable control for memory location A.

_addr b Controls the address for memory location B.

_din b Data to be written to memory location B.

_wE b Write enable control for memory location B.

A Output for memory location A (1 clock delay).

B Output for memory location B (1 clock delay).

 47

b. Control Module: Write Enable (Time Window)

All ()time wE data values are temporarily stored in RAM, so a fixed

addressing scheme is required. For this SDR design, storage addresses are determined

based on the time-window sequencing number, w , and each data value’s FFT index, k .

The two parameters are used to generate an address (_addr wE), which is composed of

two binary words. The most significant word (1_addr wE) is a function of w and the

least significant word (2_addr wE) is a function of k .

 1_ 1addr wE w= − (IV.6)
 2_addr wE k= (IV.7)
 1 2_ [_ , _]addr wE addr wE addr wE= (IV.8)

c. Control Algorithm: wE_time_win

The wE_time_win control algorithm was designed, using MATLAB code,

to implement the addressing scheme described in Equation (IV.8). When the algorithm

receives the control signal that indicates the start a new ()time wE vector, _time st , it

generates a write enable signal (_time wE) to control the RAM's input storage

mechanism. The algorithm works with control signals N and R to manage the

addressing scheme. As a reminder, N is a constant that indicates the number of samples

per FFT period. The variable R is a constant that indicates the maximum number of bin

sets that can be stored in memory before the bin index, b , starts over at zero. The

algorithm is designed to produce the two address components starting with

1_ 0addr wE = and 2_ 0addr wE = . At each clock cycle, the module increments

2_addr wE until it equals 1N − . For that entire period, _time wE , remains active high

so that storage RAM is able to store generated data. At the end of the period, the

algorithm sets _time wE to zero, it sets _time fl equal to one, and then awaits the next

_time st flag. The _time fl flag indicates that the last ()time wE data value has been

saved into memory. When _time st is reset to one, the algorithm updates the address

 48

variables so that 1_ 1addr wE = , 2_ 0addr wE = , and the steps above repeat. This

process is repeated until 1_addr wE is equal to the number of bin sets that can be stored

in memory, R , and then the address resets to the initial state where 1_ 0addr wE = and

2_ 0addr wE = .

The final element of the addressing scheme requires a SysGen

concatenation module. This block concatenates 1_addr wE with 2_addr wE to generate

the actual address _addr wE . The full implementation can be seen in Figure 22.

Figure 22. Control Module: Write Enable (Time Window).

d. Control Module: Read Enable (Frequency Window)

Once all the ()time wE data are stored in memory, a control mechanism is

required for reading out the values associated with operator-defined ranges. As shown in

Figure 23, this design utilizes two RAM modules for ROI Control memory elements, the

_ _rE freq win control algorithm, the ROI Quantity control module, and a

concatenation block to manage the process.

 49

Figure 23. Control Module: Read Enable (Frequency Window).

In this design, ROI Control memory consists of two SysGen Single Port

read-only-memory (RAM) modules, as illustrated in Figure 23. Single Port RAM (Low

Freq Wind), contains the starting indices for all the ROIs , while Single Port RAM (High

Freq Wind) contains the final indices for each. The most important point about the

memory elements is the way in which range information is stored. The memory address

(_addr ROI) for each ROI is a function of its associated bin, b , and is the same for

both RAM modules,

 _ () 1addr ROI b b= − (IV.9)

This means, for example, that the starting index for the 3rd ROI is stored in Single Port

RAM (Low Freq Wind) at ()_ 3addr ROI = 2 and the final index for the ROI is stored in

Single Port RAM (High Freq Wind) at the same address.

e. Control Module: ROI Quantity Control

The ROI Quantity control module performs two simple functions. First, it

is responsible for establishing the design’s operational mode during a bin set’s analysis

period. As mentioned in Section III.E, the design relies upon the ()pri_fl w control

signal to determine the appropriate mode. As described in the next section, the signal’s

status determines the number of bins analyzed during each bin set, _bin qty . As

illustrated in Figure 24, this is accomplished using the mem_pri control algorithm, a

 50

MUX, and the operator-defined constants, s and alts . The variable s indicates the

default number of bins analyzed when the system’s output memory capacity is below its

threshold, U . During periods when this is not the case, alts indicates the alternate

number of bins to be processed.

Figure 24. Control Module: ROI Quantity Control.

f. Control Algorithm: mem_pri

The mem_pri control algorithm’s sole purpose is to set the ()pri_fl w

flag which indicates the status of the design’s operating mode during each bin set’s

analysis period. The ()pri_fl w flag is a function of the flag that indicates whether final

output memory has exceeded the operator-defined threshold capacity, _mem fl . If the

_mem fl is zero when the bin set’s analysis period begins, indicated when _time fl is

set to one, then _pri fl is reset to zero until the next _time fl pulse is received.

However, if _mem fl is one when _time fl is pulsed active-high, then _pri fl is set to

one until the next _time fl pulse is received.

g. Control Algorithm: rE_freq_win

One of the most important functions of the Read Enable (Frequency

Window) control module is to generate signals that facilitate management of each bin’s

frequency windowing process. The _ _rE freq win control algorithm was designed

using MATLAB code to orchestrate the process. When the algorithm receives the

_time end flag, which indicates that the last energy value of a time-window has been

 51

calculated, it sets two control signals: (1) The _rng st signal is pulsed active-high to

indicate that the first address of a bins stored time-window data, ()time wE , has been

generated, and (2) the signal ()_addr ROI b signal is set as described in Eq. (IV.9). The

second signal is used to control the output of the ROI Control memory, which provides

start (_rng lo) and stop (_rng hi) indices for each ROI . The algorithm also

sequentially generates the address values (_addr rE) for memory locations associated

with each ROI . Since this process is affected by the addressing used in the

wE_time_win control algorithm, the rE_freq_win algorithm utilizes a similar two word

addressing algorithm where the most significant word (1_addr rE) is a function of w .

 1_ () 1addr rE w w= − (IV.10)

The difference in the _ _rE freq win algorithm is that the least significant word

(2_addr rE) does not necessarily start at zero and end at N -1. Instead, the set of indices

for each ROI (2addr_rE) begins with the relevant _rng lo value and ends with the

appropriate _rng hi value.

 2 () [_ (), _ () 1, ... , _ ()]b rng lo b rng lo b rng hi b= +addr_rE (IV.11)

The algorithm generates each element of 2addr_rE sequentially. The individual values

represent the second word of the address, 2_addr rE .

 1 2_ (,) [_ , _]addr rE w b addr rE addr rE= (IV.12)

When the last address of the initial bin is generated, the _ _rE freq win

control algorithm again generates two control signals. However instead of _rng st ,

_rng end is pulsed active high to indicate that the last address for the bin has been

generated; _addr ROI is then set to one in order to force ROI Control memory to

provide _rng lo and _rng hi indices for the next ROI . At the next clock pulse, _rng st

is once again pulsed active-high to indicate the beginning of addresses for a new bin. As

described in Section IV.B.3.e, the process for computing _ ()addr set b for the second

range is the same as described above and the procedure is repeated for the number of bins

 52

designated by the operating mode, _bin qty . When the final address for a bin set is

generated, the _ _re freq win control algorithm pulses the _bin fl control signal active-

high as an indicator.

Three additional points should be highlighted about the algorithm. First,

since ROI Control memory can be preconfigured to hold several unused ROIs , it is

important to set the appropriate default number of bins to be analyzed per bin set, s . It is

also critical to ensure all ROI data are stored in priority order. Finally, the number of

bins analyzed in a bin set, _bin qty , is not necessarily the same during all stages of the

design’s operation. If the flag that controls the design’s operating mode, ()pri_fl w , is set

to zero then _bin qty is equals the default value, s . Otherwise _bin qty is equal to the

alternate number of bins per bin set, pris .

h. Control Module: Accumulator Control (Frequency Window)

As the time-window energy spectrum data, ()time wE , are read out of

memory, it is necessary to manage how values in each ROI are summed together. The

process is facilitated using the _accum ctrl control algorithm, two accumulators, and a

multiplexer, as shown in Figure 25.

Figure 25. Control Module: Accumulator Control.

 53

i. Control Algorithm: accum_ctrl

The _accum ctrl control algorithm was designed using M-code to manage

the accumulators and MUX that are used to calculate the total energy in each bin,

(,)binE w b . When the algorithm receives the flag which indicates the first address of a

ROI has been generated, _rng st , it enables one of the two accumulators by setting

_1en or _ 2en equal to 1. For this description, assume Accumulator_1 is chosen to

start, so _1en is set active-high. This choice also dictates that the output MUX control

signal, _accum sel , is set to zero so that the final (,)binE w b value comes from the

appropriate accumulator. The _accum ctrl algorithm continues to assert _1en until it

receives the flag which indicates that the last address of the ROI has been generated,

_rng end . During that interval, Accumulator_1 sequentially adds ()time wE values and

calculates the total energy, as described in Eq. (III.7). When the 'ROI s energy

calculation is complete, the module pulses the _binE val signal active-high as an

indicator. There is a one-cycle delay before calculated sums are available at the

accumulator's output, and this impacts when the device can be reset and when the MUX

control signal can be updated. Therefore, two clock cycles after receiving _rng end , the

_accum sel signal is changed from zero to one and the signal that resets the accumulator,

_1rst , is pulsed high. Despite these inherent delays, if a new _rng st signal were

received one clock after a _rng end signal, the control algorithm is designed to enable

2Accumulator_ for immediate processing of the next ROI . The major point is that the

_accum ctrl algorithm is designed to switch accumulators for each new ROI .

C. BIN THRESHOLD ANALYSIS

Data generated in the Bin Energy Calculation control module provides

information about the energy in each operator-defined range of interest. The Bin

Threshold Analysis control module is designed to analyze this information and store

relevant parameters for additional processing. The major components of the module, as

 54

illustrated in Figure 26 are a RAM module to store each bins threshold value (H), a

comparator module, delay elements, and the bin_analysis control algorithm.

Figure 26. Control Module: Bin Threshold Analysis.

The initial function of the module is to compare all calculated bin energy values,

(,)binE w b , to their operator-defined thresholds, ()H b . To do this, threshold values are

stored in memory locations, ()_addr thresh b , that correspond with their associated bin

index, b .

 _ () 1addr thresh b b= − (IV.13)

As the (,)binE w b data values are generated, the ROI memory address signal introduced

in Section IV.B.3.d, _ ()addr ROI b , is used to generate the appropriate ()_addr thresh b

values. This enables the design to send energy and threshold values to the comparator for

analysis. If a bin energy meets or exceeds its threshold, ()H b , the comparator sets the

pass signal active-high for one clock. Based on the results, the Bin Threshold Analysis

control module generates analysis data that will be described in the following sections.

The _bin analysis control algorithm is designed using MATLAB code to capture

three basic parameters about each bin: the total number of bins that meet threshold

requirements, _anal qty ; the associated bins, b ; and the time-window sequence value,

w . The algorithm is built around three control signals: pass , which is generated by the

 55

comparator; _binE val , which indicates that a bin's energy has been calculated; and

_bin fl from the _ _re freq win algorithm, which indicates that the last address for a bin

set has been generated.

The algorithm essentially idles until the _binE val signal is set to one. The design

then utilizes sequential pass signals to calculate the number of bins in the bin set that

meet threshold specifications, (_anal qty). The _anal qty value is incremented every

time the pass signal is asserted until the _bin fl signal is received, which indicates that

the last bin energy calculation has been completed. Upon receipt of this flag, if

_anal qty is greater zero the module generates a write control signal (_wE qty) which

forces the _anal qty value and the time-window sequence value, w , into memory.

During the analysis phase, the pass signal is also used to manage which bin indices are

stored. Each time a bin’s calculated energy meets its designated threshold, ()H b , the

algorithm generates a separate write control signal (_wE ROI) to ensure its index, b , is

captured in memory.

D. DATA MANAGEMENT

The final stage of this SDR design utilizes analysis data from the Bin Threshold

Analysis control module to determine which FFT data points are read from temporary

memory and then stores them in a final compressed format. Figure 27 shows the three

principle control modules used to facilitate the process: Header Generator, Temp Data

Control, and Output Format. Although not shown, the Temporary FFT Data Storage

module is another integral component that will be discussed in this Data Management

section.

 56

Figure 27. Control Module: Data Formatting.

1. Control Module: Temporary FFT Data Storage

As mentioned in Section III.B, every FFT data point is stored in temporary

memory until its bin analysis is completed. The Temporary FFT Data Storage control

module uses the _ _wE temp fft control algorithm, a concatenation block, and two dual-

port RAM modules to manage the addressing scheme. The physical connections between

the modules can be seen in Figure 28.

 57

Figure 28. Control Module: Temporary FFT Data Storage.

The _ _wE temp fft control algorithm is designed using MATLAB-code to

ensure every valid FFT signal is stored in an indexed memory address

(_ _addr wE tmp). The indexing scheme is based on each signal's time-window

sequence value, w , and the FFT index, k . These parameters are associated with two

binary words that are concatenated to generate the final address. The most significant

word (1_ _addr wE tmp) is a function of the signal's FFT sequence number (v),

 1_ _ 1addr wE tmp v= − (IV.14)

It is important to note that v is different than the index m , which represents the

continuously incrementing FFT period number. The FFT sequence numbers begin at one

and increment to a maximum value (maxv) before starting again at one. maxv is a function

of the number of FFT periods per time-window, M , and the constant used to control

address rollover, R .

 1maxv MR= − (IV.15)

The index scheme’s second word (2_ _addr wE tmp), relays information about each

signal’s position in an -pointN FFT.

 2_ _ 1addr wE tmp k= − (IV.16)

 58

The values for 2_ _addr wE tmp begin at zero and are incremented to a maximum value

of 1N − . The two address components generated by _ _wE temp fft are routed to a

SysGen concatenation block, which generates the memory location for each FFT signal

 1 2_ _ (,) [_ _ , _ _]addr wE tmp v i addr wE tmp addr wE tmp= . (IV.17)

Every time a valid address is generated, the algorithm sets the _tmp wE flag equal to

one. Notice in Figure 28 that the same address is used for two separate memory blocks,

one for real FFT values and the other for the imaginary components.

2. Control Module: Header Generation

When the _bin analysis control algorithm generates a _wE qty signal, it is an

indication that all ROIs in a bin set have been analyzed and the system has stored the

data required to control the compression algorithm. As discussed in Section III.E, the

compressed data set requires a header. The Header Generation control module generates

headers using three FIFO memory blocks, two delay elements, and the two control

algorithms (_ _hdr st mgr and _hdr out), shown in Figure 29.

Figure 29. Control Module: Header Generation.

 59

a. Control Algorithm: hdr_st_mgr

Whenever the design has data being written to final output memory, the

_tmp busy control flag is set equal to one as an indicator. Although the _wE qty signal

indicates that a bin set is ready for compression and storage, if the Header Generation

control module started generating a new header while _tmp busy and _wE qty signals

are both one, a data collision would occur at the final output memory. To prevent this

from happening the _ _hdr st mgr control algorithm was designed using MATLAB code

to monitor both signals and generate a control flag, _hdr fl , which initiates the header

generation for a newly processed bin set. Based on the cases outlined in Table 6, the

control algorithm generates the appropriate value for the _hdr fl flag.

Table 6. Control Algorithm: hdr_st_mgr.

_wE qty _tmp busy _hdr fl Response

0 0 0

0 1 0

1 0 Pulsed high immediately.

1 1 Pulsed high as soon as _tmp busy returns to zero.

b. Control Algorithm: hdr_out

When the _hdr fl is set equal to one, the system is ready to start

generating a new header for the most recently processed bin set. The _hdr out control

algorithm was designed using MATLAB code to read analysis data from the appropriate

storage modules and generate the header, ()whdr , as described in Eq. (III.19). When the

algorithm receives the _hdr fl signal, it also receives the time-window sequence

number, w , which is the first data element appended to the header. During that same

clock cycle, the module receives the control signal that represents the number of bins that

 60

met threshold requirements for the bin set, ()_anal qty w . This datum is the second

element appended to the header and it also controls the number of qualifying bin indices

read out of the analysis memory. To manage the process, the algorithm generates a read

enable signal (_ _rE ROI hdr) for ()_anal qty w sequential clocks. This ensures the

appropriate data are read out of memory and appended to the header’s fourth segment,

which represents the bin indices that met threshold requirements, ()_ wanal ROI . The

third element of the header is the flag that dictates the design’s operating mode for the bin

set analysis, ()_pri fl w . When the last header bit is generated, the _hdr out control

algorithm indicates the fact by setting the _tmp fl control signal active-high. During the

entire period that ()whdr data are being generated, the algorithm sets the _hdr val

control signal equal to one as an indicator. The signal is used in the final stage to control

the data output format.

3. Control Module: Temporary Data Read Control

With the header fully generated, the design is primed to read a subset of FFT data

from temporary memory so it can then be stored in final output memory. To control the

reading process the Temporary Data Read Control module, shown in Figure 30, is

designed using three FIFO memory elements, two RAM modules for ROI Control

memory, a concatenation block, and the _rE temp control algorithm.

 61

Figure 30. Control Module: Temp Data Read Control.

The _rE temp algorithm is designed using MATLAB code to evaluate analysis

data for the purpose of selecting which FFT data to read out of temporary memory. When

the algorithm receives the flag that indicates the last header bit has been generated,

_tmp fl , it sets two distinct read enable signals to one, _rE qty and _ _rE ROI tmp . The

algorithm sets _rE qty high once per bin set, in order to control when the number of

bins that met threshold requirements for the bin set, ()_anal qty w and the time-window

index, w , values are read from memory. The _ _rE ROI tmp signal controls when each

qualifying bin index, b , is read from memory. It is asserted a total of ()_anal qty w

times per bin set.

Based on analysis data, the _rE temp control algorithm generates the addresses

(_ _addr rE tmp) from which FFT data are read out of Temporary FFT Data Storage.

Similar to _ _wE temp fft , the algorithm’s addressing scheme is based upon two binary

words. The most significant word, 1_ _addr rE tmp , is defined as a function of the time-

window sequence number, w , the number of FFT periods per time-window, M , and the

FFT sequence number, v .

 1_ _addr rE tmp wM v= + (IV.18)

 62

The least significant word, 2_ _addr rE tmp , is a function of the desired position in the

pointN − FFT. The full address is a concatenation of the two binary words

 1 2_ _ [_ _ , _ _]addr rE tmp addr rE tmp addr rE tmp= (IV.19)

During the entire period that _ _addr rE tmp data are being generated, the algorithm sets

the _tmp val control signal equal to one as an indicator. This signal is used in the final

Output Format control module to facilitate the data formatting process.

4. Control Module: Output Format

The final stage of this SDR design is the Output Format control module. The

module is responsible for packaging the header and the compressed FFT data and then

routing them to final output memory. This last stage also generates the _mem fl flag,

which indicates the status of available output memory. The components required to

design the module are shown in Figure 31 and include a concatenation block, a

multiplexer, an inverter, a FIFO memory element, a logical comparator, and a relational

comparator.

Figure 31. Control Module: Output Format.

The primary purpose of the module is to route and store bin set headers, ()whdr ,

and compressed FFT data, ()out wX and ()out wY , to the same final output memory

element. Both data types are routed through a single multiplexer so the control signal that

indicates valid header data, _hdr valid , is used to determine which type is passed to the

MUX output. It is important to note that before FFT data are routed to the MUX, the real

and imaginary components are concatenated. The real component is used as the most

 63

significant word so that final data format is as described in Eq. (III.20). As data passes

through the MUX to final memory the _hdr valid and a delayed _tmp val signals serve

as write enable controls. The _tmp val signal is generated in the rE_tmp control

algorithm to indicate that a valid temporary storage address has been generated. This

algorithm uses a delayed version of the signal to compensate for the clock delay between

the address generation and subsequent data output that is read from the Temporary FFT

Data Storage control module. In order to read stored data out of this final stage of the

design, an external source must provide an active high signal to the _rE final input node

shown in Figure 31.

The Output Format control module is also designed to generate the _mem fl flag,

which provides an indication of available memory capacity. The SysGen FIFO module

has a % full output port, which indicates the percentage of memory in use at any given

time. This signal is routed to the comparator and evaluated against an operator-defined

memory threshold (U). If the percentage of memory in use is greater than this threshold,

_mem fl is set to one, otherwise it is zero.

1, %

_
0, %

full U
mem fl

full U
>⎧

= ⎨ <⎩
 (IV.20)

E. SUMMARY

This chapter provided specific details as to how the SDR conceptual design model

was implemented using SysGen software. Each design element is described in terms of

its functional purpose and operational mechanics. Three different categories of design

elements are described: SysGen IP cores (modules); control algorithms, which are

defined using MATLAB code; and control modules, which are interconnected

compilations of the two. As described in Chapter III, the primary control modules are the

FFT, Bin Energy Calculation, Bin Threshold Analysis, and Data Management modules.

Each primary control module was built using a combination of SysGen modules, control

algorithms and sub-control modules. The following chapter explains the tests used to

validate the designed SDR’s functional operation. The chapter also provides test results

and analysis.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

V. DESIGN TESTING

In order to validate the SDR’s operational capability, it was necessary to verify

the scaling requirements and its functional mechanisms. To evaluate the scaling

properties, the design was built and tested using two separate versions. The first utilized

an 8-point FFT and the second was built with a 1024-point FFT. The functional results of

the two versions are captured throughout this chapter. There were three essential

functional operations that required testing:

1. If an IF signal containing a single frequency is applied to the SDR’s input for

varying durations in a time-window, can the system properly calculate the

associated energy and then generate the appropriate compressed output?

2. If an IF signal containing multiple frequencies is applied to the SDR’s input for

varying durations in a time-window, can the system properly calculate the energy

in the different frequency bands and then generate the appropriate compressed

output?

3. If available output memory drops below the threshold of 1-U , can the system

adjust its output so that a maximum of pris bins are included in the ()wOut data

vector?

The test procedures developed for the three functional areas are described in the

following sections. All the tests were conducted using the SysGen SDR model and

digitally generated signals. The design’s outputs were captured electronically and then

processed with a MATLAB file (M-file). The M-file decompressed the output data and

generated the plots that are included below.

A. SINGLE FREQUENCY INPUT TEST

In order to verify the SDR’s response to single frequency input signals, a

sinusoidal signal, []IF n , was applied to the system input for varying durations of the test

cycle. The test cycle was defined as three time-window periods, 3T , and the time-

 66

window, T , was defined as three FFT periods, 3M = . To simplify analysis of the test

results the period of the input signal was set equal to one FFT period. During the first

time-window, the sinusoid was applied to the system input for one FFT period. During

the second time-window, the signal was applied for 2 minT . During the third and final

time-window, the signal was applied for 3 minT . To test the design, a bin was defined such

that its ROI was equal to the digital frequency of the input signal. The bin’s energy

threshold, ()1H , was set equal to the energy contained in two minT periods, of the

sinusoid, ()1 0.0312H = . Based on these established bin parameters and the applied

input signal, the SDR should only calculate a bin energy equal to or above the threshold

for the last two time-windows. As a result, the system’s output should only contain FFT

data for the last two time-windows. After decompressing the output data stream and

evaluating its inverse Fast Fourier Transform (IFFT), the resulting waveform, ()kC ,

should be identical to the input except for during the first time-window. To clarify,

decompression involves inserting zeros into all the FFT indices not included in the bin

set’s output, ()wOut , and storing the new data set in the vector ()kD . Therefore, ()kC is

the IFFT of ()kD

 () ()IFFT D kk = ⎡ ⎤⎣ ⎦C (V.1)

As mentioned above, the first time-window of ()kC should be a constant zero

since the energy in that time-window is below the required threshold.

1. 8-Point FFT

This process was first tested using an 8-point FFT and one of three digital

frequencies (1, 2, or 3k k k= = =). The results are captured in Figure 32 through Figure

35. In each figure, the top plot depicts the input signal []IF n and the bottom plot

represents the decompressed IFFT of the design’s output. In Figure 32, the digital input

 67

frequency is set so that 1k = . The SDR was setup to evaluate that same digital frequency,

so the bin’s ROI vector is () []1 1=ROI , its vector of FFT indices is () []1 1=L , and its

threshold is set so that ()1 0.0312H = .

Figure 32. Single Frequency Input Test (N = 8 / k = 1 / ROI = 1).

As explained in the previous section, the established threshold dictates that at

least two minT periods of the proper frequency are present, per time-window, for a bin to

exceed its energy threshold. If the bin exceeds its threshold then its frequency

components should be represented in the IFFT of the decompressed system output,

()C k .

The top plot in Figure 32 illustrates that during the first time-window the input

signal is only present for one minT period. Since this time-window doesn’t contain

sufficient energy, the bin’s frequency component is not represented in the bottom plot

during the first time-window of ()C k . For the last two time-windows, since two or more

minT periods are present for the input signal, bin requirements are met, and its frequency

 68

components are represented in the associated ()C k time-windows. Based on this

analysis, the design compressed a single frequency input signal as intended.

In Figure 33, the digital input frequency is set so that 2k = . For this test the SDR

was setup to evaluate that same digital frequency, so the bin’s ROI vector is

() []1 2=ROI , its vector of FFT indices is () []1 2=L , and its threshold is set so that

()1 0.0312H = .

Figure 33. Single Frequency Input Test (N = 8 / k = 2 / ROI = 2).

As in the previous test, the top plot illustrates that during the first time-window

the input signal is only present for one minT period. Since this time-window doesn’t

contain sufficient energy, the bin’s frequency component is not represented in the bottom

plot during the first time-window of ()C k . For the last two time-windows, since two or

more minT periods are present for the input signal, the bin requirements are met, and its

frequency components are represented in the associated ()C k time-windows. Based on

this analysis the design compressed a single frequency input signal as designed.

 69

In Figure 34, the digital input frequency is set so that 3k = . For this test the SDR

was setup to evaluate that same digital frequency, so the bin’s ROI vector is

() []1 3=ROI , its vector of FFT indices is () []1 3=L , and its threshold is set so that

()1 0.0312H = .

Figure 34. Single Frequency Input Test (N = 8 / k = 3 / ROI = 3).

As in the two previous tests, the top plot illustrates that during the first time-

window the input signal is only present for one minT period. Since this time-window

doesn’t contain sufficient energy, the bin’s frequency component is not represented in the

bottom plot during the first time-window of ()C k . For the last two time-windows, since

two or more minT periods are present for the input signal, the bin requirements are met,

and its frequency components are represented in the associated ()C k time-windows.

Once again, the design compressed a single frequency input signal as designed.

The final single-frequency test was setup slightly different than the first three.

Instead of evaluating the digital frequency of the input signal, the system was setup to

evaluate another digital frequency. In Figure 35, the digital input frequency is set so that

 70

1k = . For this test the SDR was setup to evaluate 3k = , so the bin’s ROI vector is

() []1 3=ROI , its vector of FFT indices is () []1 3=L , and its threshold is set so that

()1 0.0312H = .

Figure 35. Single Frequency Input Test (N = 8 / k = 1 / ROI = 3).

The input signal is applied in the same fashion as in the first three tests. However,

since the design is setup to evaluate a frequency that was not present for any duration of

the test period, the defined bin never contains sufficient energy and its frequency

component is never represented in ()C k . Once again, the design compressed the single

frequency input signal as intended.

Based on the four tests described above, the results captured in the Figure 32

through Figure 35 indicate that the SDR responded as intended and is capable of handling

single frequency input signals. Although the design operated as expected, it has a

performance limitation that should be recognized and considered. All of the development

tests were conducted such that the []IF n signal was a sinusoid with an integer number of

cycles per N samples. If the sinusoid did not have an integer number of cycles per N

 71

samples, then the FFT would not have all its energy at one digital frequency, although

most of its energy would be in the indices most closely associated with the frequency of

the input. Since some of the energy could fall into different bins, results that are very near

the threshold might turn out differently if the sinusoid is not an integer number of cycles

per FFT period.

For example, if an input signal, []IF n , with a digital frequency of 1.5k = were

used in the tests above and the sample frequencies were aligned, signal energy would be

distributed over all digital frequencies, but with 51% at 1k = and 36% at 2k = . As a

result, the result might be different from the first example if the bin energy was close to

the bin energy threshold. If this response is unacceptable, the effect can be minimized by

increasing the SDR’s frequency resolution. As described in Section II.A, this is

accomplished by increasing the FFT period. If this is not a viable option or doesn’t

completely resolve the issue, then the operator must be especially thoughtful as to how

bins are defined and thresholds established.

The tests also assumed that the sampled input signal and the SDR shared the same

sample frequency. Although the design’s sample frequency can be set to ensure this

situation exists, it is not a requirement. The []IF n signal is sampled by an external

system and then routed to this design’s input ports. If there were a sample rate mismatch,

the SDR would need to incorporate interpolation or decimation to address the issue.

2. 1024-Point FFT

The single frequency input test above was also applied to a version of the design

that utilized a 1024-point FFT and digital frequencies 1, 3, or 5k k k= = = . The results of

the second round of tests are captured in Figure 36 through Figure 39. Similar to earlier

testing, the bin thresholds were established so that in order for a bin to meet its

requirement at least two minT periods of the proper frequency had to be applied to the

system input during the associated time-window. If the bin meets its threshold

requirements then its frequency components should be represented in the IFFT of the

decompressed system output, ()C k .

 72

For the test results illustrated in Figure 36 the digital input frequency was set so

that 1k = . The SDR was setup to evaluate that same digital frequency, so the bin’s ROI

vector was () []1 1=ROI , its vector of FFT indices was () []1 1=L , and its threshold was

set so that ()1 0.0312H = .

Figure 36. Single Frequency Input Test (N = 1024 / k = 1 / ROI = 1).

The top plot in Figure 36 illustrates that during the first time-window the input

signal is only present for one minT period. Since this period doesn’t contain sufficient

energy, the bin’s frequency component is not represented in the bottom plot during the

first time-window of ()C k . For the last two time-windows, since two or more minT

periods are present for the input signal, the bin requirements are met, and its frequency

components are represented in the associated ()C k time-windows. Based on this

analysis the design compressed a single frequency input signal as designed.

In Figure 37, the digital input frequency is set so that 3k = . For this test the SDR

was setup to evaluate that same digital frequency, so the bin’s ROI vector was

() []1 3=ROI , its vector of FFT indices was () []1 3=L , and its threshold was set so that

()1 0.0312H = .

 73

Figure 37. Single Frequency Input Test (N = 1024 / k = 3 / ROI = 3).

As in the previous test, the top plot illustrates that during the first time-window

the input signal is only present for one minT period. Since this time-window doesn’t

contain sufficient energy, the bin’s frequency component is not represented in the bottom

plot during the first time-window of ()C k . However, for the last two time-windows,

since two or more minT periods are present for the input signal, the bin requirements are

met, and its frequency components are represented in the associated ()C k time-

windows. Based on this analysis, the design compressed a single frequency input signal

as intended.

In Figure 38, the digital input frequency is set so that 5k = . For this test the SDR

was set up to evaluate that same digital frequency, so the bin’s ROI vector was

() []1 5=ROI , its vector of FFT indices was () []1 5=L , and its threshold was set so that

()1 0.0312H = .

 74

Figure 38. Single Frequency Input Test (N = 1024 / k = 5 / ROI = 5).

As in the two previous tests, the top plot illustrates that during the first time-

window the input signal is only present for one minT period. Since this time-window

doesn’t contain sufficient energy, the bin’s frequency component is not represented in the

bottom plot during the first time-window of ()C k . However, for the last two time-

windows, since two or more minT periods are present for the input signal, the bin

requirements are met, and its frequency components are represented in the associated

()C k time-windows. Based on this analysis the design compressed a single frequency

input signal as intended.

The final single-frequency test was setup so that system did not evaluate the

digital frequency of the input signal. In Figure 39, the digital input frequency is set so

that 1k = . For this test the SDR was setup to evaluate 5k = , so the bin’s ROI vector

was () []1 5=ROI , its vector of FFT indices was () []1 5=L , and its threshold was set so

that ()1 0.0312H = .

 75

Figure 39. Single Frequency Input Test (N = 1024 / k = 1 / ROI = 5).

The input signal is applied in the same fashion as in the first three tests. However,

since the design is setup to evaluate a frequency that was not present for any duration of

the test period, the defined bin never contains sufficient energy and its frequency

component is never represented in ()C k . Once again, the design compressed the single

frequency input signal as designed.

Based on the four test described in this section, the results captured in the Figure

36 through Figure 39 indicate that the SDR responded as intended. The frequency

alignment issues mentioned in the previous section apply to this test sequence as well.

B. MULTI-FREQUENCY INPUT TEST

In order to test the design’s functional response to multi-frequency inputs, a few

variations were made to the single frequency input test. Instead of []IF n containing one

frequency component, the signal was reconstituted to include two different single

frequency components (1IF and 2IF).

 76

 [] [] []1 2IF n IF n IF n= + (V.2)

For a series of tests, the digital frequencies of the two components were set equal

to one of three values. Although the duration of 1IF and 2IF were identical to each other

throughout the test cycle, they were different for each time-window. As in the previous

tests, during the first time-window the signals were applied for, minT ; during second time-

window, they were applied for 2 minT , and during third time-window they were applied for

3 minT .

Another change to the single input test involved adding a second bin to the

analysis process. For the new series of tests, the ROIs were set to evaluate two of the

three optional input frequencies. The bin thresholds (1)H and (2)H were setup in a

fashion similar to the single input tests. In order for a bin to meet its threshold, two minT

periods of the proper input frequency had to be applied during a time-window. Therefore,

during any time-window that either bin’s calculated energy meets its energy threshold,

the bin’s associated frequency component should be represented in the resulting ()C k

waveform.

1. 8-Point FFT

The SDR’s multi-frequency functionality was tested first using an 8-point FFT

and digital frequencies (1, 2, or 3k k k= = =). The individual test results are captured in

Figure 40 through Figure 43 Although the figures are similar to the results from the

single frequency tests, an extra plot was generated for each iteration. The top plots depict

the two single frequency components that constitute the []IF n signal. The middle plots

represent the actual input signals []IF n , and the bottom plots represent the decompressed

IFFT of the design’s output, based on the specified ROIs .

For the test results illustrated in Figure 40, the digital input frequencies were

1k = and 2k = and the SDR was setup to evaluate both frequencies in separate bins.

The parameters for the first bin were as follows: its range of digital frequencies,

 77

() []1 1=ROI ; the vector of associated FFT indices, () []1 1=L ; and its threshold,

()1 0.0312H = . For the second bin: () []2 2=ROI ; () []2 2=L ; and ()2 0.0312H = .

Figure 40. Multi-Frequency Input Test (N = 8 / k = [1,2] / ROI = [1,2]).

The top plot illustrates that during the first time-window both frequency

components were present for one minT period. Since this did not satisfy the energy

threshold requirements for either bin, neither frequency component is represented in the

first time-window of the bottom plot. During the second time-window, the input signal

contained two minT periods of each input frequency component. Since this satisfied both

bins’ energy thresholds, both frequency components are represented in the second time-

window of ()C k . For the final time-window, the three minT periods of each input

frequency exceeded the two bin thresholds. As a result, both frequency components are

represented in the last time-window of the output waveform. Based on this analysis the

design compressed a multi-frequency input signal as designed.

For the test results illustrated in Figure 41, the digital input frequencies were

1k = and 3k = . The SDR was setup to evaluate the frequencies 1k = and 2k = in

 78

separate bins. As in the previous test, the two sets of bin parameters were as follows:

() []1 1=ROI ; () []1 1=L ; ()1 0.0312H = ; () []2 2=ROI ; () []2 2=L ; and

()2 0.0312H = .

Figure 41. Multi-Frequency Input Test (N = 8 / k = [1,3] / ROI = [1,2]).

The top plot illustrates that during the first time-window 1k = and 3k = input

frequency components were present for one minT period. During that period, the energy

calculated for the first bin did not meet the threshold, so the associated frequency

component is not present in the processed output signal. During the second time-

window, the input signal consisted of two minT periods of the 1k = frequency

component. Since this satisfied the first bin’s energy threshold, the frequency component

is represented in the second time-window of ()C k . For the final time-window, there are

three minT periods of the 1k = input frequency component. This exceeded the first bin’s

established threshold, so the frequency component is represented in the last time-window

of the output waveform. Unlike previous analysis, the second bin was set to evaluate

2k = , which was never applied to the input. As a result the bin’s energy calculations

 79

were constantly zero and the frequency component is never represented in the bottom

plot. Based on the analysis of this test, the design compressed a multi-frequency input

signal as desired.

For the test results illustrated in Figure 42, the digital input frequencies were

1k = and 2k = . The SDR was setup to evaluate the frequencies 1k = and 3k = in

separate bins. The two sets of bin parameters for the test were as follows: for the first bin

() []1 1=ROI , () []1 1=L , and ()1 0.0312H = ; and for the second bin () []2 3=ROI ,

() []2 3=L , and ()2 0.0312H = .

Figure 42. Multi-Frequency Input Test (N = 8 /k = [1,2] / ROI = [1,3]).

The top plot illustrates that during the first time-window 1k = and 2k = input

frequency components were present for one minT period. As in all the previous test the

first bin did not meet its threshold during this period, so the associated frequency

component is not present in the output during the first time-window. During the last two

time-windows, the input signal contained two or more minT periods of the 1k =

frequency component. Since the associated calculations led to energy values that met

 80

threshold requirements, the frequency component is represented in the last two time-

windows of ()C k . The frequency component for the second bin was never applied to the

input for this test, so its energy calculations were constantly zero. As a result, the

frequency component is never represented in the bottom plot. Based on the analysis of

this test, the design compressed a multi-frequency input signal as desired.

For the test results illustrated in Figure 43, the digital input frequencies were

1k = and 3k = . However, the SDR was setup to evaluate two unrelated frequencies

2k = and 4k = , in separate bins. The two sets of bin parameters for the test were as

follows: for the first bin () []1 2=ROI , () []1 2=L , and ()1 0.0312H = ; and for the

second bin () []2 4=ROI ; () []2 4=L ; and ()2 0.0312H = .

Figure 43. Multi-Frequency Input Test (N = 8 / k = [1,3] / ROI = [2,4]).

As in previous tests, the top plot illustrates that 1k = and 2k = input frequency

components were applied for varying durations in each of the time-windows. However,

since the frequency components defined for the two bins (2k = and 4k =) were never

applied to the input for this test, all energy calculations were equal to zero. As a result,

 81

neither frequency component is represented in the bottom plot. Based on the analysis of

this test, the design compressed a multi-frequency input signal as desired.

Based on the four tests described in this section, the results captured in Figure 40

through Figure 43 indicate that the SDR responded as desired and is capable of handling

multi-frequency input signals. The frequency alignment issue that was described in the

single-frequency testing Section, V.A.1, also impacts this test sequence.

2. 1024-Point FFT

The multi-frequency test was also applied to the 1024-point version of the design.

For the second set of tests, digital frequencies 1, 3, or 5k k k= = = were used in varying

combinations and the results are captured in Figure 44 through Figure 47.

For the test results illustrated in Figure 44 the digital input frequencies were 1k =

and 3k = and the SDR was setup to evaluate both frequencies in separate bins. The

parameters for the first bin were as follows: its range of digital frequencies,

() []1 1=ROI ; the vector of associated FFT indices, () []1 1=L ; and its threshold,

()1 0.0312H = . For the second bin: () []2 3=ROI , () []2 3=L , and ()2 0.0312H = .

Figure 44. Multi-Frequency Input Test (N = 1024 / k = [1 , 3] / ROI =[1 , 3]).

 82

The top plot illustrates that during the first time-window both frequency

components were present for one minT period. Since this did not satisfy the energy

threshold requirements for either bin, neither frequency component is represented in the

first time-window of the bottom plot. During the second time-window, the input signal

contained two minT periods of each input frequency component. Since this satisfied both

bins’ energy thresholds, both frequency components are represented in the second time-

window of ()C k . For the final time-window, the three minT periods of each input

frequency exceeded the two bin thresholds. As a result, both frequency components are

represented in the last time-window of output waveform. Based on this analysis the

design compressed a multi-frequency input signal as desired.

For the test results illustrated in Figure 45, the digital input frequencies were once

again 1k = and 3k = , but the SDR was setup to evaluate the frequencies 1k = and

5k = in separate bins. The two sets of bin parameters were as follows: For the first bin

() []1 1=ROI , () []1 1=L , and ()1 0.0312H = ; For the second bin () []2 5=ROI ,

() []2 5=L , and ()2 0.0312H = .

Figure 45. Multi-Frequency Input Test (N = 1024 / k = [1 , 3] / ROI = [1 , 5]).

 83

The top plot illustrates that during the first time-window 1k = and 3k = input

frequency components were present for one minT period. During that period, the energy

calculated for the first bin did not meet the threshold, so the associated frequency

component is not present in the processed output signal. During the second time-

window, the input signal consisted of two minT periods of the 1k = frequency

component. Since this satisfied the first bin’s energy threshold, the frequency component

is represented in the second time-window of ()C k . For the final time-window, there are

three minT periods of the 1k = input frequency component. This exceeded the first bin’s

established threshold, so the frequency component is represented in the last time-window

of the output waveform. Unlike previous analysis, the second bin was set to evaluate

5k = , which was never applied to the input. As a result the bin’s energy calculations

were constantly zero and the frequency component is never represented in the bottom

plot. Based on the analysis of this test, the design compressed a multi-frequency input

signal as desired.

For the test results illustrated in Figure 46 the digital input frequencies were 3k =

and 5k = and the SDR was setup to evaluate both frequencies in separate bins. The two

sets of bin parameters were as follows: For the first bin () []1 3=ROI , () []1 1=L , and

()1 0.0312H = ; For the second bin () []2 5=ROI , () []2 5=L , and ()2 0.0312H = .

 84

Figure 46. Multi-Frequency Input Test (N = 1024 / k = [3 , 5] / ROI =[3 , 5]).

The top plot illustrates that during the first time-window both frequency

components were present for one minT period. Since this did not satisfy the energy

threshold requirements for either bin, neither frequency component is represented in the

first time-window of the bottom plot. During the second time-window, the input signal

contained two minT periods of each input frequency component. Since this satisfied both

bins’ energy thresholds, both frequency components are represented in the second time-

window of ()C k . For the final time-window, the three minT periods of each input

frequency exceeded the two bin thresholds. As a result, both frequency components are

represented in the last time-window of the output waveform. Based on this analysis the

design compressed a multi-frequency input signal as desired.

For the test results illustrated in Figure 47, the digital input frequencies were

again 3k = and 5k = , but the SDR was setup to evaluate 2k = and 4k = , in separate

bins. The two sets of bin parameters were as follows: For the first bin () []1 2=ROI ,

() []1 2=L , and ()1 0.0312H = ; For the second bin () []2 4=ROI , () []2 4=L , and

()2 0.0312H = .

 85

Figure 47. Multi-Frequency Input Test (N = 1024 / k = [3 , 5] / ROI = [1 , 4]).

As in previous tests, the top plot illustrates that 3k = and 5k = input frequency

components were applied for varying durations in each of the time-windows. However,

since the frequency components defined for the two bins (2k = and 4k =) were never

applied to the input for this test, all energy calculations were equal to zero. As a result,

neither frequency component is represented in the bottom plot. Based on the analysis of

this test, the design compressed a multi-frequency input signal as desired.

Based on the four test described in this section, the results captured in Figure 44

through Figure 47 indicate that the SDR responded as desired and is capable of handling

multi-frequency input signals.

C. MEMORY COMPENSATION TEST

The last functional test requires restricting the available output memory and

verifying that the system is able to adjust the data output scheme accordingly. In order to

simulate restrictions on output memory, the multi-frequency test was used with a few

changes to design parameters: Capacity for the final output memory was reduced to hold

 86

only 32 data points; the read-enable control signal, _rE final , was set to zero for

prolonged periods so that no data could be read from memory; the memory threshold, U ,

was set to 25%; the ROIs used for analysis were matched to the input frequency

components; and finally, input sinusoids were present throughout the test period so that

both bins would exceed their established energy thresholds during all three time-

windows.

The memory compensation test was run three times using the 1024-point version

of the design. Results from each memory capacity test include a total of six plots, and are

illustrated in Figure 48 through Figure 50. The top plots depict the two single frequency

components that constitute the []IF n signal. The second plots represent the actual input

signal []IF n . The third plot represents the status of the read-enable signal, during the

associated time-window input period. Since there is a delay (_proc del) between the

input signal and storage of related data points, the indices (τ) for these plots are adjusted

to visually align with the relevant input and data storage periods.

 _t proc delτ = + (V.3)

For the 1024-point version of the design, the _proc del =3072. The next two plots are

also functions of τ . The fourth plot represents the output memory capacity, % full ,

relative to a time-window input period. The fifth plot depicts the status of the ()_pri fl w

control signal, which determines the design’s operating mode; described in Section

IV.B.3.f. The sixth and last plot reveals the decompressed IFFT of the system’s output,

()C k . Under normal operating conditions, the system should store the data points for

both bins. However, when memory capacity is limited with respect to U , the system

should only store data for the first bin.

The first iteration of the memory compensation test was setup as a baseline to

demonstrate the system’s output in the default operating mode. For this test, the digital

input frequencies were 1k = and 3k = and the SDR was setup to evaluate both

frequencies in separate bins. The parameters for the first bin were as follows: the range of

 87

digital frequencies, () []1 1=ROI ; the vector of associated FFT indices, () []1 1=L ; and its

threshold, ()1 0.0156H = . For the second bin: () []2 3=ROI , () []2 3=L , and

()2 0.0156H = . Another set of parameters that were important to this test were the

default, s , and alternate, pris , number of bins that should processed per bin set. For the

design’s normal operating mode the default was set so that 2s = , and for situations when

memory capacity exceeded the established threshold the alternate was set so that 1pris = .

The system and bin parameters defined for this test were used for all three memory

compensation tests.

 88

Figure 48. SDR Output Memory Compensation (Test 1).

 89

The top two plots illustrate the input signal []IF n and its frequency components.

Since there are three minT periods of both frequencies in each time-window, both bins

meet their energy thresholds for the entire test period. This means that if the ()_pri fl w

control signal is zero during a time-window, then both input frequency components

should be represented in the associated time-window of the final output waveform,

()C k .

Based on the plots in Figure 48, the ()_pri fl w was zero for the entire test

period. As expected, both frequency components were represented in the appropriate

plots and the system performed as desired. Plots three through five are the key to

understanding the design’s mechanics. Since the output memories read enable control

signal, _rE final , was one for entire test period the data stored never filled more than

one of the thirty-two available memory locations. This situation ensured that memory

capacity, % full , never exceeded the storage threshold, U . As a result, the ()_pri fl w

was zero for the entire test period and the input signal, []IF n , and final output

waveform, ()C k , were a match.

For the second test, the system and bin parameters were identical to that of the

first test: The digital input frequencies components were 1k = and 3k = ; the first bin’s

parameters were () []1 1=ROI , () []1 1=L , ()1 0.0156H = ; the second bin’s parameters

were () []2 3=ROI , () []2 3=L , ()2 0.0156H = ; and the number of bins analyzed per

bin set were a function of 2s = and 1pris = . The differences in this test are a function of

changes to the output memory’s read enable control signal, _rE final . The test results

are captured in Figure 49.

 90

Figure 49. SDR Output Memory Compensation (Test 2).

 91

As discussed in the previous test, both bins meet their energy thresholds for all

three time-windows. This means that for any time-window that the design is operating in

its default mode, ()_ 0pri fl w = , the input signal shown in the second plot should be

identical to the processed output signal shown in the bottom plot. However, for any time-

window in which ()_ 1pri fl w = , only the 1k = frequency component should be

represented in the output waveform’s associated time-window.

As illustrated in Figure 49, the _rE final signal was zero for the first time-

window and was then changed to one for the last two time-windows. As a result, the

compressed FFT data and bin set header for the first time-window occupied more than

25% of the available output memory. This situation changed the system’s operating mode

for the second time-window, which is indicated by the fact that ()_ 2 1pri fl = for that

period. Accordingly, the second time-window of ()C k only represents the 1k =

frequency component. Since the _rE final signal remained high for the duration of the

test period, the memory usage, % full , remained below the threshold for the last time-

window. As a result, the ()_ 3pri fl was zero for the period, the system returned to its

default operating mode, and both frequency components were represented in the final

output waveform.

For the third test, the system and bin parameters were once again identical to that

of the first test: The digital input frequencies components were 1k = and 3k = ; the first

bin’s parameters were () []1 1=ROI , () []1 1=L , ()1 0.0156H = ; the second bin’s

parameters were () []2 3=ROI , () []2 3=L , ()2 0.0156H = ; and the number of bins

analyzed per bin set were a function of 2s = and 1pris = . The differences in this test are

again a function of changes to the output memory’s read enable control signal,

_rE final . The test results are captured in Figure 50 .

 92

Figure 50. SDR Output Memory Compensation (Test 3).

 93

As in the two previous tests, both bins met their energy thresholds for all three

time-windows. Therefore, for any time-window in which the design is operating in its

default mode, ()_ 0pri fl w = , the input signal shown in the second plot should be

identical to the processed output signal shown in the bottom plot. However, for any time-

window in which ()_ 1pri fl w = , only the 1k = frequency component should be

represented in the associated period of the final output waveform.

As illustrated in Figure 50, the _rE final signal was zero for the first two time-

windows and was then changed to one for the third. As a result, the compressed FFT data

and bin set header for the first two time-windows occupied more than 25% of the

available output memory. This situation changed the system’s operating mode for the last

two time-windows, which is indicated by the fact that () ()_ 2 _ 3 1pri fl pri fl= = .

Accordingly, in the last two time-windows of the output waveform, ()C k , only the 1k =

frequency component is represented.

Based on the three tests described in this section, the results captured in Figure 48

through Figure 50 indicate that the SDR responded as desired and is able to adjust its

operational mode according to the available output memory.

D. LESSONS LEARNED

During the testing process, two notable points were discovered. First, parameter

changes must be made to key elements when scaling the design’s FFT period. Second, a

digital system’s machine epsilon must be considered when processing its output data. The

concept will be described in Section V.D.2.

1. Scaling Considerations

The SysGen FFT module is the most obvious place to start when considering

elements affected by scaling the points per FFT. In order to adjust the number of data

 94

points associated with an FFT period, N , the module provides a dropdown menu

(Number of sample points) with all the available options. In Figure 51, the parameter is

boxed in red.

Figure 51. FFT Period (Parameter).

As the FFT period is changed, the 1/ N scaling factor in the FFT definition, Eq.

(II.4), must be accounted for in the SDR design. As mentioned in Section IV.A.1, the

SysGen FFT module’s output was not scaled so the SysGen Scale modules, boxed in

Figure 52, were used instead. The modules scale numerical values by powers of two, so

to represent a value of 31/8 2−= , an operator would use the module’s interface to set a

value of -3. For this design, the value entered in the Scale modules is referred to as scaleN .

Point being, in order to properly implement the 1/ N scaling, scaleN , must be manually

adjusted in both Scaling modules where

 2log ()scaleN N= − . (V.4)

 95

Figure 52. Nscale (Parameter).

Memory capacity is another element of the design that can be greatly affected by

a change in the FFT period. As N increases, so do the memory requirements. As a

result, considerations must be made regarding the appropriate memory depth for each of

the design’s storage components. The design uses 11 storage devices to work with the

system’s analysis data. A complete list is provided in Table 7.

 96

Table 7. Storage Devices (Design Analysis Data).

Storage Device Type Control Module

FIFO (Time Wind) Energy (Time Window)

Dual Port RAM (Freq Wind) Energy (Frequency Window)

Dual Port RAM (Real Data) Temporary FFT Data Storage

Dual Port RAM (Imag Data) Temporary FFT Data Storage

FIFO (ROI - Header) Header Generation

FIFO (w - Header) Header Generation

FIFO (_anal qty - Header) Header Generation

FIFO (ROI - Temp Data) Temp. Data Read Control

FIFO (w - Temp Data) Temp. Data Read Control

FIFO (_anal qty - Temp Data) Temp. Data Read Control

FIFO (Final Output) Output Format

The design’s addressing schemes can also be affected by changes to the FFT

period. The system utilizes the four addressing algorithms listed in Table 8 to manage

data storage requirements. Each of them generates an address based on two binary words.

The least significant word of each algorithm can range from zero to 1N − . This fact

makes it critically important that each algorithm’s least significant word is defined with

at least 2log ()N bits.

 97

Table 8. Address Generation Algorithms.

Addressing Algorithm Control Module

_ _wE time win Write Enable (Time Window)

_ _rE freq win Read Enable (Freq Window)

_ _wE temp fft Temporary FFT Data Storage

_rE tmp Temporary Data Read Control

2. Machine Epsilon Considerations

There are varying definitions of machine epsilon, but for fixed-point numbers,

they all involve determining the smallest positive number that a digital system can

recognize and generate. When working with fixed-point designs, machine epsilon is a

function of the number of binary digits that follow the decimal point. For example, if a

design uses a _ 4 _ 3Fix arithmetic word (fixed point, four total bits, three after the

decimal) then the smallest value that can be represented is ()3
2 1010

0.001 2 0.1250−= = .

However, if the same design were to use a _ 6 _ 5Fix arithmetic word (fixed point, six

total bits, five after the decimal) then the smallest value that could be represented is

()5
2 1010

0.00001 2 0.03125−= = . When combined with rounding or truncating, machine

epsilon can lead to numerical calculations that should mathematically equal zero but

result in other values. Such is the case with all digital designs.

To address the issue in the final design, two different solutions were investigated.

First, the algorithm used to process the design’s output was altered so that it would

discard any numerical value (real or imaginary) that fell below the design’s machine

epsilon. In this design, the machine epsilon is determined by the fixed-point binary

format, _ _ 1Fix D D − , that is used for the inputs to the SysGen FFT module, as

described in Figure 53. Second, the design was altered and tested with greater binary

 98

resolution. This was done by increasing the number of bits used in each of the system’s

calculations. All the components affected by changing the binary format are listed in

Table 9 but as mentioned above the major catalyst for change are the data formats used in

the realIF input gateway and the Imag signals illustrated in Figure 53.

Figure 53. FFT Inputs Requiring Change.

The two gateways feed directly into the SysGen FFT module and their binary

resolutions determine the FFT module’s output resolution. For instance, during the first

round of testing the gateways’ binary format was _12 _11Fix and the FFT module's

output format was _16 _11Fix . For the second round of testing, the gateways’ binary

format was changed to _ 24 _ 23Fix and the resulting FFT output format was

_ 28 _ 23Fix . This general change in output format ultimately affects each of the design

elements in Table 9. Therefore, the binary formatting parameters in each must be

appropriately adjusted.

 99

Table 9. Modules Affected by Changes to Numerical Binary Format.

Design Element Control Module Considerations

Gateway In (realIF) NA Formats the real component of the input to the FFT module and determines the modules

output format. (Based on system interface)

 Imag NA Formats the imaginary component of the input to the FFT module and determines the

modules output format. (Based on system interface)

AddSub Energy

(Time Window)

Input to the module comes from the Energy (FFT Index) module. Therefore, the AddSub

module should have an equal number of bits after the decimal point. To determine the

number of bits before the decimal, an operator should estimate the maximum value that

could be calculated in a ()ine wtE vector.

bd_in (Temp Data) Temp. FFT Data Storage Must match the output format from the FFT module.

bd_in (Freq Wind) Energy

(Freq. Window)

Must match the output format from the FFT module.

Accumulator1 Accumulator Control

(Freq. Window)

‘Output Precision: Number of Bits’ parameter must match the ‘Binary Point’ parameter

of the SysGen AddSub module used in the Energy (Time Window) control module

Accumulator2 Accumulator Control

(Freq. Window)

‘Output Precision: Number of Bits’ parameter must match the ‘Binary Point’ parameter

of the SysGen AddSub module used in the Energy (Time Window) control module

 100

Increasing the design’s binary resolution results in reduced machine epsilon, but it

does not guarantee that calculations will result in the expected zero values. Therefore,

adjusting the system’s fixed-point formats is only useful if the design’s application

requires more fidelity.

E. SUMMARY

This chapter explains the tests used to validate the SDR’s functional operations

and scaling requirements. Three functional elements of the system’s response were

verified: single frequency input; multi-frequency input; and memory compensation.

Based on the tests results, the SDR performed as desired. In order to test the design’s

scaling requirements, it was built and tested with two different FFT periods, 8N = and

1024N = . Components affected by the changes in FFT period are captured in Table 7,

Table 8, and Table 9. Another benefit of the testing process was that the effects and

workarounds for machine epsilon were realized. Chapter VI summarizes the body of

work captured in the thesis and then provides recommendations for follow-on work.

 101

VI. CONCLUSION

This chapter provides a summary of the thesis and reviews the major concepts

that influenced the development of the FPGA-based SDR design. The chapter also

contains recommendations regarding further research and updates to the final design.

A. CONCLUSION

This thesis was conceived to help mitigate the restrictions imposed on FPGA-

based communications radio designs by external IO bandwidth mismatches. The goal was

to design an FPGA-based SDR that could compress sampled wideband IF signals based

on reprogrammable parameters. The design was developed around the concept of

independent, operator-defined time-frequency bins and evaluation of the energy in each

bin. Although the design concept incorporated bins with varying time-window periods,

the final design was simplified so that each bin used the same period.

Xilinx’s System Generator software was utilized to develop and test the

behavioral definition of the design. The tool was also used to synthesize the design,

perform the place-and-route functions, and generate the .bin file that provides the

FPGA’s configuration information. The development tool provided a layer of abstraction

that reduced the requirement for in-depth of knowledge with respect to HDL coding. If

the design required management of internal hardware clocks, then the ability to code in a

HDL would have been more critical.

The SDR was developed for a Virtex-4 FPGA architecture. While this can

potentially affect its portability, the SysGen FFT v4.1 module was the only component

used that is not backward compatible to the Virtex-1. This issue can be resolved by using

a different version of the SysGen FFT module and then making minor changes to

parameters in the _pwr time control algorithm.

Two versions of the algorithm were built and tested. The first utilized an 8-point

FFT, which simplified analysis efforts. The second version utilized a 1024-point FFT and

helped verify the requirements for scaling the design. Both versions were tested using

 102

single and multi-frequency input signals, without restrictions on the output memory. This

ensured the basic compression scheme operated properly. Then, the 1024-point algorithm

was used to verify the design automatically adjusted its operations based on the available

storage capacity. Testing provided valuable insights regarding the effects and

workarounds for machine epsilon. It also verified the design’s desired functional

operations.

Although the final design operated as expected, it has performance limitations that

should be recognized and considered. All of the development tests were conducted such

that the digital input frequencies and the defined bin frequencies were an exact match. If

frequencies that did not match the FFT window, i.e., frequencies that did not have an

integer number of cycles per FFT window, were used there would be a slight smearing

effect in the frequency domain. It is assumed that this effect is minor, and would not

significantly impact the efficacy of the algorithm. The tests also assumed the input signal

and the SDR shared the same sample frequency. If this were not the case, the

implementation could correct for this with interpolation or decimation, or similar

multirate signal processing.

B. RECOMMENDATIONS

The research and development process for this thesis resulted in a simple, FPGA-

based signal compressor. The design facilitates more efficient use of the output capacity

available to systems affected by external IO bandwidth mismatches. Despite its simple

nature, the design and its components could be optimized and used as a platform for

future development efforts.

The first recommendation would be to address design limitations discussed in

Chapter V. In order to address issues associated with the input signal and bin frequency

alignment, larger FFT periods should be utilized. This would increase the design’s

frequency resolution and reduce the effects of smearing in the frequency domain. In order

to remove the effects of sample frequency mismatches, the design’s sample frequency

could be changed. Otherwise, a signal processing module could be added to incorporate

interpolation and/or decimation. Additionally, the Energy (Time Window) control

 103

module only utilizes one control algorithm, pwr_time , to facilitate several different

processes. A more modular design could improve the overall portability of the SDR.

In order to improve the design’s operational capabilities, there are three areas that

are worth exploring. First, the original design concept incorporated time-frequency bins

with independent time-window periods, but the final design was simplified so that each

bin shared the same period. This change reduces the design’s ability to evaluate diverse

modulation techniques simultaneously. Additional development efforts in this area may

enhance the design’s real world applicability. Next, the design takes the FFT of real

signal inputs. The FFT module used accommodates complex inputs. Future work could

explore potential design simplification or reduced gate count by using or designing an

FFT module that only uses real input signals. Finally, the SDR was designed to compress

input sample data based on evaluation of the energy in each time-frequency (TF) bin. The

TF construct that was implemented in the final design was based on a simple process.

Some of the more sophisticated TF analysis methods mentioned in the introduction could

be tested with the design’s existing functional structure.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

LIST OF REFERENCES

[1] Edward Young and Paul Moakes, “DSPs vs. FPGAs for multiprocessing,”
http://www.dspdesignline.com/206102177. (Accessed December 12, 2008).

[2] Chris Dick, “A Case for Using FPGAs in SDR PHY,”

http://www.eetimes.com/story/OEG20020809S0049. (Accessed December 12,
2008).

[3] Jeffrey Reed, Software Radio: A Modern Approach to Radio Engineering.

Prentice Hall, 2002.

[4] Antonia Papandreou-Suppappola, “Time–Frequency Processing: Tutorial on

Principles and Practice,” Arizona State University.

[5] Ronald Allen, Signal analysis: time, frequency, scale, and structure, IEEE Press,

2004.

[6] Srikrishna Bhashyam, “Time-Frequency Analysis,”

http://www.owlnet.rice.edu/~elec631/Projects99/mit/index2.htm . (Accessed
December 12, 2008).

[7] Anwar Al-Jowder, “Analysis of digital communication signals and extraction of

parameters,” Monterey, California: Naval Postgraduate School, 1994.

[8] Boualem Boashash and Peter O'shea, “Time-Frequency Analysis Applied To

Signaturing Of Underwater Acoustic Signals,” University of Queensland.

[9] Amit Shoham, “FPGA Tools Bridge Gap Between Algorithm and

Implementation,” http://www.dspdesignline.com/192201514. (Accessed
December 12, 2008).

[10] Rodger Hosking and Richard Kuenzler, “Embedding FPGAs in DSP-driven

Software Defined Radio Applications,”
http://www.embedded.com/columns/technicalinsights/164302833 . (Accessed
December 12, 2008).

[11] Charayaphan Charoensak, “System on Chip FPGA Design of an FM Demodulator

using a Kalman Band-Pass Sigma-Delta Architecture,” Nanyang Technological
University.

[12] Dick Benson, “The Design and Implementation of a GPS Receiver Channel,”

DSP Magazine, October 2005.

 106

[13] Daniel Denning , “Using System Generator To Design A Reconfigurable Video
Encryption System,” Institute of System Level Integration.

[14] Konstantinos Voskakis, “Modeling and simulation of a non-coherent frequency

shift keying transceiver using a Field Programmable Gate Array (FPGA),”
Monterey, California: Naval Postgraduate School, 2008.

[15] Andrew La Valley, “Design and implementation of a Motor Incremental Shaft

Encoder,” Monterey, California: Naval Postgraduate School, September 2008.

[16] Jingzhao Ou, “Creating Parameterized and Energy-Efficient System Generator

Designs,” University of Southern California.

[17] Justin Delva, “FPGA design and verification using Simulink,”

http://www.automotivedesignline.com/205800474 (Accessed December 12,
2008).

[18] Roberto Cristi, Modern digital signal processing, Thomson/Brooks/Cole, 2004.

[19] Yankin Tanurhan and Vlad Dinkevich, “DSP Design Flows in FPGAs: Strategies

for designing DSP applications for FPGAs,”
http://www.dspdesignline.com/187002863. (Accessed December 12, 2008).

[20] System Generator for DSP: Getting Started Guide. Xilinx Inc., November 1,

2007.

[21] ISE In-Depth Tutorial. Xilinx Inc., July 10, 2007

http://www.xilinx.com/support/techsup/tutorials/tutorials9.htm .November 14,
2007. (Accessed December 12,2008).

[22] System Generator Tutorial. Xilinx Inc., 2007.

[23] Sudhakar Yalamanchili, VHDL a Starter’s Guide, 2nd Edition. Prentice Hall,

2005.

[24] Deepak Kumar Tala, “Verilog In One Day,” http://www.asic-

world.com/verilog/verilog_one_day1.html. (Accessed December 12, 2008).

 107

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Frank Kragh
Naval Postgraduate School
Monterey, California

4. Herschel Loomis
Naval Postgraduate School
Monterey, California

5. Alan Ross
Naval Postgraduate School
Monterey, California

6. Roberto Cristi
Naval Postgraduate School
Monterey, California

7. Alexander Julian
Naval Postgraduate School
Monterey, California

8. Donna Miller
Naval Postgraduate School
Monterey, California

9. Durke Wright

Naval Network Warfare Command
Little Creek, Virginia

